首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2838篇
  免费   123篇
  国内免费   1篇
  2023年   31篇
  2022年   30篇
  2021年   76篇
  2020年   51篇
  2019年   53篇
  2018年   94篇
  2017年   62篇
  2016年   112篇
  2015年   122篇
  2014年   134篇
  2013年   225篇
  2012年   246篇
  2011年   216篇
  2010年   145篇
  2009年   130篇
  2008年   141篇
  2007年   132篇
  2006年   113篇
  2005年   89篇
  2004年   77篇
  2003年   72篇
  2002年   47篇
  2001年   48篇
  2000年   36篇
  1999年   28篇
  1998年   17篇
  1997年   17篇
  1996年   18篇
  1995年   13篇
  1994年   9篇
  1992年   25篇
  1991年   19篇
  1990年   22篇
  1989年   17篇
  1988年   24篇
  1987年   18篇
  1986年   22篇
  1985年   23篇
  1984年   19篇
  1983年   24篇
  1982年   12篇
  1981年   14篇
  1979年   18篇
  1978年   9篇
  1977年   12篇
  1974年   12篇
  1973年   7篇
  1972年   18篇
  1971年   12篇
  1969年   10篇
排序方式: 共有2962条查询结果,搜索用时 15 毫秒
121.

Background

Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs) showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability.

Methodology/Principal Findings

This study was undertaken in four forested districts of central India (July, 2011– March, 2012). All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9–98.8) and lowest sensitivity was 76% (95% CI; 71.7–79.6). For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9) and 20% (95% CI; 15.6–24.5) respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6–0.9).

Conclusion

This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.  相似文献   
122.
123.

Background

Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress.

Methodology

The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5.

Results

The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana.

Conclusions

Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.  相似文献   
124.
125.

Background

Protein structure comparison play important role in in silico functional prediction of a new protein. It is also used for understanding the evolutionary relationships among proteins. A variety of methods have been proposed in literature for comparing protein structures but they have their own limitations in terms of accuracy and complexity with respect to computational time and space. There is a need to improve the computational complexity in comparison/alignment of proteins through incorporation of important biological and structural properties in the existing techniques.

Results

An efficient algorithm has been developed for comparing protein structures using elastic shape analysis in which the sequence of 3D coordinates atoms of protein structures supplemented by additional auxiliary information from side-chain properties are incorporated. The protein structure is represented by a special function called square-root velocity function. Furthermore, singular value decomposition and dynamic programming have been employed for optimal rotation and optimal matching of the proteins, respectively. Also, geodesic distance has been calculated and used as the dissimilarity score between two protein structures. The performance of the developed algorithm is tested and found to be more efficient, i.e., running time reduced by 80–90 % without compromising accuracy of comparison when compared with the existing methods. Source codes for different functions have been developed in R. Also, user friendly web-based application called ProtSComp has been developed using above algorithm for comparing protein 3D structures and is accessible free.

Conclusions

The methodology and algorithm developed in this study is taking considerably less computational time without loss of accuracy (Table 2). The proposed algorithm is considering different criteria of representing protein structures using 3D coordinates of atoms and inclusion of residue wise molecular properties as auxiliary information.
  相似文献   
126.
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.  相似文献   
127.
IntroductionPolyamidoamine dendrimer nanoparticles (~ 4 nanometers) are inert polymers that can be linked to biologically active compounds. These dendrimers selectively target and accumulate in inflammatory cells upon systemic administration. Dendrimer-linked compounds enable sustained release of therapeutic compounds directly at the site of damage. The purpose of this study was to determine if dendrimers can be used to target the optic nerve (ON) ischemic lesion in our rodent and nonhuman primate models of nonarteritic anterior ischemic optic neuropathy (NAION), a disease affecting >10,000 individuals in the US annually, and for which there currently is no effective treatment.MethodsNAION was induced in male Long-Evans rats (rNAION) and in one adult male rhesus monkey (pNAION) using previously described procedures. Dendrimers were covalently linked to near-infrared cyanine-5 fluorescent dye (D-Cy5) and injected both intravitreally and systemically (in the rats) or just systemically (in the monkey) to evaluate D-Cy5 tissue accumulation in the eye and optic nerve following induction of NAION.ResultsFollowing NAION induction, Cy-5 dendrimers selectively accumulated in astrocytes and circulating macrophages. Systemic dendrimer administration provided the best penetration of the ON lesion site when injected shortly after induction. Systemic administration 1 day post-induction in the pNAION model gave localization similar to that seen in the rats.ConclusionsDendrimers selectively target the ischemic ON lesion after induction of both rNAION and pNAION. Systemic nanoparticle-linked therapeutics thus may provide a powerful, targeted and safe approach to NAION treatment by providing sustained and focused treatment of the cells directly affected by ischemia.  相似文献   
128.
129.
130.
How sex is determined has been one of the most intriguing puzzles in biology since antiquity. Although a fundamental process in most metazoans, there seems to be myriad of ways in which sex can be determined – from genetic to environmental sex determination. This variation is limited mainly to upstream triggers with the core of sex determination pathway being conserved. Zebrafish has gained prominence as a vertebrate model system to study development and disease. However, very little is known about its primary sex determination mechanism. Here we review our current understanding of the sex determination in zebrafish. Zebrafish lack identifiable heteromorphic sex chromosomes and sex is determined by multiple genes, with some influence from the environment. Recently, chromosome 4 has been identified as sex chromosome along with few sex-linked loci on chromosomes 5 and 16. The identities of candidate sex-linked genes, however, have remained elusive. Sex in zebrafish is also influenced by the number of meiotic oocytes in the juvenile ovary, which appear to instruct retention of the ovarian fate. The mechanism and identity of this instructive signal remain unknown. We hypothesize that sex in zebrafish is a culmination of combinatorial effects of the genome, germ cells and the environment with inputs from epigenetic factors translating the biological meaning of this interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号