首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   14篇
  286篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   7篇
  2015年   15篇
  2014年   20篇
  2013年   23篇
  2012年   17篇
  2011年   21篇
  2010年   19篇
  2009年   11篇
  2008年   18篇
  2007年   18篇
  2006年   13篇
  2005年   19篇
  2004年   12篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1993年   4篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
61.
Prass  Marju  Ramula  Satu  Jauni  Miia  Setälä  Heikki  Kotze  D. Johan 《Biological invasions》2022,24(2):425-436
Biological Invasions - The ecological impacts of invasive species may change or accumulate with time since local invasion, potentially inducing further changes in communities and the abiotic...  相似文献   
62.
Hybridisation between certain willow species is a common feature leading to novel genotypes varying in growth rate and stress tolerance. The objective of this 4-week study was to investigate the effects of decreased watering, enhanced ultraviolet-B irradiation (UV-BBE, 280–315 nm, 7.2 kJ m−2 day−1) and combined decreased watering and enhanced UV-B irradiation on di- and polyamines in the leaves of Salix myrsinifolia and its hybrid with S. myrsinites. Control plantlets were well-watered and exposed to ambient UV-B irradiation (UV-BBE, 3.6 kJ m−2 day−1). HPLC analyses showed that the constitutive concentrations of soluble di- and polyamines varied markedly between S. myrsinifolia and its hybrids. The degree of responses to treatments also varied: in S. myrsinifolia, concentrations of free putrescine were clearly increased by reduced watering, while in the hybrid willow, change in putrescine was less pronounced and not significant. Results also showed that the increase in putrescine in S. myrsinifolia by reduced watering was mitigated by concurrent enhancement of UV-B irradiation. There were no direct UV-B effects on the soluble polyamines.  相似文献   
63.
An L-galactonate dehydratase and the corresponding gene were identified from the mould Hypocrea jecorina (Trichoderma reesei). This novel enzyme converts L-galactonate to L-threo-3-deoxy-hexulosonate (2-keto-3-deoxy-L-galactonate). The enzyme is part of the fungal pathway for D-galacturonic acid catabolism, a pathway which is only partly known. It is the second enzyme of this pathway after the D-galacturonic acid reductase. L-galactonate dehydratase activity is present in H. jecorina cells grown on D-galacturonic acid but absent when other carbon sources are used for growth. A deletion of the L-galactonate dehydratase gene in H. jecorina results in a strain with no growth on D-galacturonic acid. The active enzyme was produced in the heterologous host Saccharomyces cerevisiae and characterized. It exhibited activity with L-galactonate and D-arabonate where the hydroxyl group of the C2 is in L- and the hydroxyl group of the C3 is in D-configuration in the Fischer projection. However, it did not exhibit activity with D-galactonate, D-gluconate, L-gulonate or D-xylonate where the hydroxyl groups of the C2 and C3 are in different configuration.  相似文献   
64.
A novel flavivirus was isolated from mosquitoes in Finland, representing the first mosquito-borne flavivirus from Northern Europe. The isolate, designated Lammi virus (LAMV), was antigenically cross-reactive with other flaviviruses and exhibited typical flavivirus morphology as determined by electron microscopy. The genomic sequence of LAMV was highly divergent from the recognized flaviviruses, and yet the polyprotein properties resembled those of mosquito-borne flaviviruses. Phylogenetic analysis of the complete coding sequence showed that LAMV represented a distinct lineage related to the Aedes sp.-transmitted human pathogenic flaviviruses, similarly to the newly described Nounané virus (NOUV), a flavivirus from Africa (S. Junglen et al., J. Virol. 83:4462-4468, 2009). Despite the low sequence homology, LAMV and NOUV were phylogenetically grouped closely, likely representing separate species of a novel group of flaviviruses. Despite the biological properties preferring replication in mosquito cells, the genetic relatedness of LAMV to viruses associated with vertebrate hosts warrants a search for disease associations.The genus Flavivirus in the family Flaviviridae consists of 53 recognized virus species that are enveloped, positive-sense single-stranded RNA viruses. The virion consists of three structural proteins: capsid (C), membrane (M), and envelope (E). In addition, seven nonstructural proteins are present in infected cells (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). Based on their antigenic properties and vector associations, flaviviruses have been grouped into mosquito-borne, tick-borne, and no-known-vector viruses and have been isolated from vertebrates, bats, and rodents (15, 25). The grouping of flaviviruses according to their transmission mode is strongly supported by phylogenetic analyses of their genomic sequences (9, 18, 31).Mosquito-borne flaviviruses are a large and divergent group of viruses that can be differentiated phylogenetically into those associated either with encephalitic disease and transmission by Culex spp. mosquitoes or with diseases with hemorrhagic complications and transmission by Aedes spp. (18). Seven groups of mosquito-borne flaviviruses, namely, the Aroa, dengue, Japanese encephalitis, Kokobera, Ntaya, Spondweni, and yellow fever virus groups are recognized (15, 25). These groups include important animal and human pathogens such as dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and yellow fever virus (YFV).Unclassified insect flaviviruses that have no recognized association with vertebrates have been isolated from a variety of mosquito species and also from mosquito cell lines. These insect flaviviruses do not appear to infect vertebrate cells and are not associated with human or animal disease. The cell fusing agent virus (CFAV), a tentative species in the genus Flavivirus, was the first of these insect viruses to be characterized (5, 40), Although CFAV was originally identified in cultured mosquito cells, it was later isolated from mosquitoes collected in Puerto Rico (7). This as-yet-unclassified insect flavivirus group now also includes Kamiti river virus (KRV) isolated in Kenya (10, 38) and a virus isolated from Culex spp. in Japan, designated culex flavivirus (22). In addition, related viral sequences or isolates have been recently reported from mosquitoes in Spain (1), the United States and Trinidad (26), and Mexico (14). Moreover, the identification of flaviviruslike sequences integrated within the genomes of Aedes mosquitoes further complicates the evolutionary history of the flaviviruses. These sequences, currently referred to as cell silent agent are genetically most closely related to CFAV and possibly share common evolutionary origin (11). Phylogenetically, the insect viruses form a divergent outgroup that may represent a primordial flavivirus lineage. Apart from the insect flaviviruses, the other recently discovered novel flaviviruses represent highly divergent lineages, such as Tamana bat virus (13), and Ngoye virus (20). Recently, a novel flavivirus, Nounané virus (NOUV) was isolated from a novel mosquito vector species, Uranotaenia mashonaensis in Côte d''Ivoire (23), and was shown to be phylogenetically related to the human pathogenic mosquito-borne flaviviruses.Several arboviruses have been reported from Northern Europe including the flavivirus tick-borne encephalitis virus (24, 36) but, to date, no mosquito-borne flaviviruses have been isolated. Our aim was to screen for arboviruses in Finland by studying mosquitoes using virus isolation and subsequent arbovirus antigen detection, which resulted in the identification of a novel flavivirus. We present here the isolation and characterization of this isolate, designated Lammi virus (LAMV), and discuss the implications of our findings.  相似文献   
65.
A topic under intensive study in community ecology and biogeography is the degree to which microscopic, as well as macroscopic organisms, show spatially-structured variation in community characteristics. In general, unicellular microscopic organisms are regarded as ubiquitously distributed and, therefore, without a clear biogeographic signal. This view was summarized 75  years ago by Baas-Becking, who stated "everything is everywhere, but, the environment selects". Within the context of metacommunity theory, this hypothesis is congruent with the species sorting model. By using a broad-scale dataset on stream diatom communities and environmental predictor variables across most of Finland, our main aim was to test this hypothesis. Patterns of spatial autocorrelation were evaluated by Moran's I based correlograms, whereas partial regression analysis and partial redundancy analysis were used to quantify the relative importance of environmental and spatial factors on total species richness and on community composition, respectively. Significant patterns of spatial autocorrelation were found for all environmental variables, which also varied widely. Our main results were clear-cut. In general, pure spatial effects clearly overcame those of environmental effects, with the former explaining much more variation in species richness and community composition. Most likely, missing environmental variables cannot explain the higher predictive power of spatial variables, because we measured key factors that have previously been found to be the most important variables (e.g. pH, conductivity, colour, phosphorus, nitrogen) shaping the structure of diatom communities. Therefore, our results provided only limited support for the Baas-Becking hypothesis and the species sorting perspective of metacommunity theory.  相似文献   
66.

Background  

The D-galacturonic acid derived from plant pectin can be converted into a variety of other chemicals which have potential use as chelators, clarifiers, preservatives and plastic precursors. Among these is the deoxy-keto acid derived from L-galactonic acid, keto-deoxy-L-galactonic acid or 3-deoxy-L- threo -hex-2-ulosonic acid. The keto-deoxy sugars have been found to be useful precursors for producing further derivatives. Keto-deoxy-L-galactonate is a natural intermediate in the fungal D-galacturonate metabolic pathway, and thus keto-deoxy-L-galactonate can be produced in a simple biological conversion.  相似文献   
67.
Permanent jejunal fistulas enable easy, noninjurious, repeated and direct administration to and collection from the small intestines of conscious laboratory dogs. This study aimed at identifying potential alterations in the small intestinal morphology and function of this canine model after the surgery required to establish the fistulas. Assays of serum folate and cobalamin and (51)Cr-EDTA permeability tests were performed before and 4 wk after experimental jejunoplasties in 14 laboratory beagle dogs. Serum folate concentrations (mean ± SD) before (12.22 ± 1.80 μg/L) and after (14.14 ± 1.70 μg/L) jejunal surgery were within reference ranges for healthy dogs, although folate concentrations were higher after surgery. The cobalamin concentrations and the 6-h urinary excretion of (51)Cr-EDTA before (573.50 ± 150.04 ng/L and 6.75 ± 1.56%, respectively) and after (496.71 ± 164.22 ng/L and 6.41 ± 1.10%) were normal for healthy dogs, and no significant differences between pre- and postsurgical values were detected. The findings of the present study indicate that the small intestinal vitamin absorption and permeability of laboratory beagle dogs with jejunal fistulas remains unimpaired.  相似文献   
68.
The actin depolymerizing factors (ADFs) play important roles in several cellular processes that require cytoskeletal rearrangements, such as cell migration, but little is known about the in vivo functions of ADFs in developmental events like branching morphogenesis. While the molecular control of ureteric bud (UB) branching during kidney development has been extensively studied, the detailed cellular events underlying this process remain poorly understood. To gain insight into the role of actin cytoskeletal dynamics during renal branching morphogenesis, we studied the functional requirements for the closely related ADFs cofilin1 (Cfl1) and destrin (Dstn) during mouse development. Either deletion of Cfl1 in UB epithelium or an inactivating mutation in Dstn has no effect on renal morphogenesis, but simultaneous lack of both genes arrests branching morphogenesis at an early stage, revealing considerable functional overlap between cofilin1 and destrin. Lack of Cfl1 and Dstn in the UB causes accumulation of filamentous actin, disruption of normal epithelial organization, and defects in cell migration. Animals with less severe combinations of mutant Cfl1 and Dstn alleles, which retain one wild-type Cfl1 or Dstn allele, display abnormalities including ureter duplication, renal hypoplasia, and abnormal kidney shape. The results indicate that ADF activity, provided by either cofilin1 or destrin, is essential in UB epithelial cells for normal growth and branching.  相似文献   
69.
Seven Friesian human lactoferrin (hLf)-transgenic primiparous dairy cows expressing recombinant hLf (rhLf) in their milk were included in the study. After calving, concentrations of rhLf and bovine LF (bLf) in the milk, somatic cell count and milk yield were determined. The concentration of rhLf was found to be constant, about 2.9 mg/mL, throughout the early lactation period of 3 months. The concentration of bLf in colostrum was higher after calving, but decreased rapidly during the first days of lactation. The mean concentration of bLf was 0.15 mg/mL, but concentrations varied between cows from 0.07 mg/mL to 0.26 mg/mL. Based on that, it may be possible to improve the non-specific host defence mechanism in the mammary gland of dairy cows by enhancing the content of rhLf in the milk.  相似文献   
70.
We have determined the human genome to contain 296 different Src homology-3 (SH3) domains and cloned them into a phage-display vector. This provided a powerful and unbiased system for simultaneous assaying of the complete human SH3 proteome for the strongest binding to target proteins of interest, without the limitations posed by short linear peptide ligands or confounding variables of more indirect methods for protein interaction screening. Studies involving three ligand proteins, human immunodeficiency virus-1 Nef, p21-activated kinase (PAK)2 and ADAM15, showed previously reported as well as novel SH3 partners with nanomolar affinities specific for them. This argues that SH3 domains may have a more dominant role in directing cellular protein interactions than has been assumed. Besides showing potentially important new SH3-directed interactions, these studies also led to the discovery of novel signalling proteins, such as the PAK2-binding adaptor protein POSH2 and the ADAM15-binding sorting nexin family member SNX30.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号