首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   8篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   8篇
  2011年   4篇
  2010年   8篇
  2009年   10篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有129条查询结果,搜索用时 31 毫秒
91.
The pteropod mollusk Clione limacina swims by dorsal-ventralflapping movements of its wing-like parapodia. Two basic swimspeeds are observed—slow and fast. Serotonin enhancesswimming speed by increasing the frequency of wing movements.It does this by modulating intrinsic properties of swim interneuronscomprising the swim central pattern generator (CPG). Here weexamine some of the ionic currents that mediate changes in theintrinsic properties of swim interneurons to increase swimmingspeed in Clione. Serotonin influences three intrinsic propertiesof swim interneurons during the transition from slow to fastswimming: baseline depolarization, postinhibitory rebound (PIR),and spike narrowing. Current clamp experiments suggest thatneither Ih nor IA exclusively accounts for the serotonin-inducedbaseline depolarization. However, Ih and IA both have a stronginfluence on the timing of PIR—blocking Ih increases thelatency to PIR while blocking IA decreases the latency to PIR.Finally, apamin a blocker of IK(Ca) reverses serotonin-inducedspike narrowing. These results suggest that serotonin may simultaneouslyenhance Ih and IK(Ca) and suppress IA to contribute to increasesin locomotor speed.  相似文献   
92.
Heterologous intercellular communication was determined qualitatively by lucifer yellow dye transfer and quantitatively by transfer of radiolabeled uridine metabolites and electrical current in hamster oocyte-cumulus complexes during meiotic maturation in vitro and in vivo. In addition, changes in cell resting potentials during maturation were recorded. Significantly less time was required for germinal vesicle breakdown (GVBD) in oocytes matured in vitro than in oocytes stimulated in vivo (1.81 +/- 0.06 hr, N = 13 vs 2.46 +/- 0.07 hr, N = 18, respectively, P less than 0.001). Resting potentials of the oocyte (RP-o) and cumulus cells (RP-c) significantly increased contemporaneously with GVBD in vitro (RP-o: from -18.9 +/- 3.2 mV to -33.2 +/- 2.9 mV, P less than 0.001; RP-c: from -16.3 +/- 1.9 mV to -27.5 +/- 2.6 mV, P less than 0.001) and in vivo after hCG injection (RP-o: from -16.8 +/- 5.9 mV to -30.1 +/- 3.9 mV, P less than 0.001; RP-c: from -15.5 +/- 3.8 mV to -26.3 +/- 3.2 mV, P less than 0.001). RP-o and RP-c progressively increased with time of culture up to 7 hr (maximum time examined) while the values reached maxima in in vivo matured oocytes 4.5 hr post-hCG and subsequently declined concomitant with the onset of cumulus expansion. Cumulus to oocyte coupling decreased progressively with time after release from meiotic arrest both in vitro and in vivo, as assessed by a progressive reduction in transfer of either uridine marker or lucifer yellow from the cumulus cell to the oocyte. By 4.5 hr after hCG injection, cumulus expansion had begun in 100% of complexes examined. Expansion was extensive by 7 hr post-hCG and spread of lucifer yellow from a cumulus cell was limited to very few adjacent cumulus cells. Oocyte to cumulus cell metabolic coupling also decreased progressively with time in both treatment groups. Examination of the extent of heterologous ionic coupling revealed that ionic coupling exhibited biphasic and, bidirectionally parallel, increases during meiotic maturation. While these temporal changes were observed in both groups, the coupling ratios were much greater in those complexes matured in vitro than in vivo. These results show that dye, metabolic, and electrical coupling exist between the immature hamster oocyte and its surrounding cumulus cells but that during the early stages of meiosis, metabolic and dye coupling decrease, while electrical coupling increases biphasically.  相似文献   
93.
Because bifunctional enzymes are distinctive and highly conserved products of relatively infrequent gene-fusion events, they are particularly useful markers to identify clusters of organisms at different hierarchical levels of a phylogenetic tree. Within the subdivision of gram-negative bacteria known as superfamily B, there are two distinctive types of tyrosine-pathway dehydrogenases: (1) a broad- specificity dehydrogenase (recently termed cyclohexadienyl dehydrogenase [CDH]) that can utilize either prephenate or L-arogenate as alternative substrates and (2) a bifunctional CDH that also posseses chorismate mutase activity. (T-proteins). The bifunctional T-protein, thought to be encoded by fused ancestral genes for chorismate mutase and CDH, was found to be present in enteric bacteria (Escherichia, Shigella, Salmonella, Citrobacter, Klebsiella, Erwinia, Serratia, Morganella, Cedecea, Kluyvera, Hafnia, Edwardsiella, Yersinia, and Proteus) and in Aeromonas and Alteromonas. Outside of the latter "enteric lineage," the T-protein is absent in other major superfamily-B genera, such as Pseudomonas (rRNA homology group I), Xanthomonas, Acinetobacter, and Oceanospirillum. Hence, the T-protein must have evolved after the divergence of the enteric and Oceanospirillum lineages. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase-phe, an early-pathway isozyme sensitive to feedback inhibition by L- phenylalanine, has been found in each member of the enteric lineage examined. The absence of both the T-protein and DAHP synthase-phe elsewhere in superfamily B indicates the emergence of these character states at approximately the same evolutionary time.   相似文献   
94.
Within the tribe Stenodermatini the systematics of the complex of species allied with the genus Artibeus has generated several alternative phylogenetic hypotheses. The most recent treatment recognized four genera (Artibeus, Dermanura, Enchisthenes, and Koopmania) and suggested that the most recent common ancestor of these four genera would include the common ancestor of all other currently recognized Stenodermatini genera except Sturnira. To test this hypothesis, we examined an EcoRI-defined nuclear satellite DNA repeat and 402 bp of DNA sequence variation from the mitochondrial cytochrome b gene. Phylogenetic conclusions based on Southern blot analyses, in situ hybridization, and mitochondrial DNA sequence data indicate that Enchisthenes is not closely related to Dermanura, Artibeus, or Koopmania and that Dermanura, Artibeus, and Koopmania shared a common ancestor after diverging from the remainder of the Stenodermatini. If our conclusions are correct, then justification for recognizing Dermanura and Koopmania as generically distinct from Artibeus must be based on the magnitude of difference that distinguishes each rather than on the conclusion that to place them as congeneric with Artibeus creates a paraphyletic taxon.   相似文献   
95.
Biotinyl-oligosaccharides are a relatively new generation of saccharide probes that enable immobilization of desired oligosaccharides on streptavidin matrices for studies of carbohydrate-protein interactions. Here we describe the facile preparation of biotinyl-l-3-(2-naphthyl)- alanine hydrazide (BNAH) derivatives of oligosaccharides, containing a strong UV absorbing and fluorescent group, in which the ring of the reducing-end monosaccharide is nonreduced. We evaluate reactivities of immobilized BNAH- N -glycans with plant lectins that recognize aspects of the oligosaccharide core or outer-arms. We make some comparisons with 2-amino-6-amidobiotinyl-pyridine (BAP) derivatives obtained by reductive amination, and 6-(biotinyl)-aminocaproyl-hydrazide (BACH) derivatives which have a longer spacer-arm. N -Glycan-BNAH and-BAP derivatives have, overall, comparable reactivities with lectins which recognize N -glycan outer-arms or the trimannosyl core, but only BNAH and BACH derivatives are bound by lectins which recognize the non- reduced core. Moreover, with Pisum sativum agglutinin (PSA) which additionally requires the fucosyl- N- glycan-asparaginyl core for high affinity binding, the immobilized BNAH derivative (which is an alanine hydrazide beta-glycoside) can substitute for the natural beta- glycosylasparaginyl core, whereas the BACH derivative (aminocaproyl- hydrazide-beta-glycoside) is less effective. BNAH is a derivatization reagent of choice, therefore, for solid phase carbohydrate-binding experiments with immobilized N -glycans.   相似文献   
96.
Multidimensional heteronuclear NMR studies have been applied to the resonance assignment and conformational analysis of 13C-enriched Neu5Acalpha2-3Galbeta1-4Glc. It is demonstrated that three-dimensional ROESY-HSQC experiments provide through-space distance restraints which cannot be observed with conventional homonuclear 1H techniques due to resonance overlap. In particular, connectivities demonstrating the existence of the "anti" conformation about the Galbeta1-4Glc glycosidic linkage are unambiguously observed. It is shown that 13C isotopic enrichment of the trisaccharide at a level >95% enables straightforward measurement of trans-glycosidic 1H-13C and 13C-13C coupling constants and a Karplus-type relation is derived for the latter. In total 15 conformational restraints were obtained for the trisaccharide in aqueous solution, all of which were in excellent agreement with theoretical parameters computed from a 5 ns molecular dynamics simulation of the glycan.   相似文献   
97.
The prey capture phase of feeding behavior in the pteropod molluscClione limacina consists of an explosive extrusion of buccal cones, specialized oral appendages which are used to catch the prey, and significant acceleration of swimming. Several groups of neurons which control different components of prey capture behavior inClione have been previously identified in the CNS. However, the question of their coordination in order to develop a normal behavioral reaction still remains open. We describe here a cerebral interneuron which has wide-spread excitatory and inhibitory effects on a number of neurons in the cerebral and pedal ganglia, directed toward the initiation of prey capture behavior inClione. This bilaterally symmetrical neuron, designated Cr-PC (Cerebral interneuron initiating Prey Capture), produced monosynaptic activation of Cr-A motoneurons, which control buccal cone extrusion, and inhibition of Cr-B and Cr-L motoneurons, whose spike activities maintain buccal cones in a withdrawn position inside the head in non-feeding animals. In addition, Cr-PC produced monosynaptic activation of a number of swim motoneurons and interneurons of the swim central pattern generator (CPG) in the pedal ganglia, pedal serotonergic Pd-SW neurons involved in a peripheral modulation of swimming and the serotonergic Heart Excitor neuron.  相似文献   
98.
99.
100.
Fourteen native strains of Trichoderma spp. from wildand agricultural pathosystems in the state of Yucatan, Mexico, with growth-promoting ability of Capsicum chinense Jacq. seedlings were evaluated and antagonistic effect of their filtrate against second-stage juveniles (J2) of Meloidogyne incognita. The strains Th05-02 and Th27-08 showed the best significant effects on plant hight variable increments 55.57 and 47.62%, theTh07-04 with 29.48% more root length, theTh02-01 and Th07-04 isolates increased from 48.71 to 84.61% in volume radical and 53.40% of total dry biomass. Statistical analysis (p≤0.001) of Th43 and Th43-13-14 filtrates caused 100% mortality at 24 and 48h. In the test of reversibility to 24 h after replacing the filtrates Th43-13, Th43-14, TH09-06 and TH20-07 by sterile distilled water, the J2 did not recover their viability, so they were considered as the best potential strains of Trichoderma spp. with antagonistic capacity in J2 of M.incognita.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号