首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
  2021年   4篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   8篇
  2014年   9篇
  2013年   9篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   1篇
  2008年   8篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有123条查询结果,搜索用时 109 毫秒
71.
72.
The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM(2.5)) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) "knockin," and chemokine receptor 3 knockout (CXCR3(-/-)) mice following 24-28 wk of PM(2.5) or filtered air. Chronic PM(2.5) exposure resulted in increased CXCR3-expressing CD4(+) and CD8(+) T cells in the lungs, spleen, and blood with elevation in CD11c(+) macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP(+) regulatory T cells increased with PM(2.5) exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM(2.5) exposure. Mixed lymphocyte cultures using primary, PM(2.5)-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM(2.5) potentiates a proinflammatory Th1 response involving increased homing of CXCR3(+) T effector cells to the lung and modulation of systemic T cell populations.  相似文献   
73.
During the acute phase of infection, T. cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas'disease have not been fully identified. GPI-anchored mucins, glycoinositolphospholipids, and glycoproteins comprise some of the most abundant T. cruzi surface molecules. IL-10 IFN-γ-secreting CD4+ T cells are activated during chronic infections and are responsible for prolonged persistence of parasite and for host protection against severe inflammatory responses. In this work we evaluated the role of rMBP::SSP4 protein of T. cruzi, a recombinant protein derived from a GPI anchored antigen, SSP4, as an immunomodulator molecule, finding that it was able to induce high concentrations of IL-10 and IFN-γ both in vivo and in vitro; during this last condition, both cytokines were produced by IL-10-IFN-γ-secreting CD4+ T cells.  相似文献   
74.
Thirty-four senior dogs (pointers 8 - 11 years, beagles 9 - 11 years) were used to evaluate the effects of oligosaccharides on nutritional and immunological characteristics. Dogs were randomly allotted to treatments [1% chicory (CH), 1% mannan-oligosaccharide (MOS), 1% chicory + 1% MOS (CM), or no supplementation (control, CON)] in a parallel design with a 4 week baseline period followed by a 4 week treatment period. Dietary supplementation with MOS or CM tended (P = 0.07) to increase food intake due, in part, to an increase in fermentable fibre and a decrease in energy content of the diet. Although wet faecal output increased (P < 0.05) for dogs supplemented with MOS or CM, when corrected for food intake, no differences were noted. The CM treatment increased (P < 0.05) faecal score (1 = hard and dry, 5 = watery liquid), although these scores remained in a desirable range (3 to 3.5). Chicory supplementation increased (P = 0.07) fat digestibility. Chicory or MOS increased (P  0.05) faecal bifidobacteria concentrations 0.4 and 0.5 log10 cfu/g DM, respectively, compared to the CON, while MOS decreased (P < 0.05) faecal E. coli concentrations. Oligosaccharides did not affect white blood cell (WBC) concentrations, but CH and CM tended to increase (P = 0.10) neutrophil concentrations compared to control dogs. Peripheral lymphocyte concentrations were decreased in dogs supplemented with MOS (P = 0.06) and CM (P < 0.05). Chicory and MOS alter faecal microbial populations and certain indices of the immune system of senior dogs.  相似文献   
75.

Background

G-protein-coupled receptors (GPCRs) are important drug targets and a better understanding of their molecular mechanisms would be desirable. The crystallization rate of GPCRs has accelerated in recent years as techniques have become more sophisticated, particularly with respect to Class A GPCRs interacting with G-proteins. These developments have made it possible for a quantitative analysis of GPCR geometrical features and binding-site conformations, including a statistical comparison between Class A GPCRs in active (agonist-bound) and inactive (antagonist-bound) states.

Results

Here we implement algorithms for the analysis of interhelical angles, distances, interactions and binding-site volumes in the transmembrane domains of 25 Class A GPCRs (7 active and 18 inactive). Two interhelical angles change in a statistically significant way between average inactive and active states: TM3-TM6 (by -9°) and TM6-TM7 (by +12°). A third interhelical angle: TM5-TM6 shows a trend, changing by -9°. In the transition from inactive to active states, average van der Waals interactions between TM3 and TM7 significantly increase as the average distance between them decreases by >2 Å. Average H-bonding between TM3 and TM6 decreases but is seemingly compensated by an increase in H-bonding between TM5 and TM6. In five Class A GPCRs, crystallized in both active and inactive states, increased H-bonding of agonists to TM6 and TM7, relative to antagonists, is observed. These protein-agonist interactions likely favour a change in the TM6-TM7 angle, which creates a narrowing in the binding pocket of activated receptors and an average ~200 Å3 reduction in volume.

Conclusions

In terms of similar conformational changes and agonist binding pattern, Class A GPCRs appear to share a common mechanism of activation, which can be exploited in future drug development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0567-3) contains supplementary material, which is available to authorized users.  相似文献   
76.

Background

The Qualitative aspect of health care delivery is one of the major factors in reducing morbidity and mortality in a health care setup. The expanding suburban secondary health care delivery facilities of the Municipal Corporation of Greater Mumbai are an important part of the healthcare backbone of Mumbai and therefore the quality of care delivered here needed standardization.

Material and Methods

The project was completed over a period of one year from Jan to Dec, 2013 and implemented in three phases. The framework with components and sub-components were developed and formats for data collection were standardized. The benchmarks were based on past performance in the same hospital and probability was used for development of normal range. An Excel spreadsheet was developed to facilitate data analysis.

Results

The indicators comprise of 3 components - Statutory Requirements, Patient care & Cure and Administrative efficiency. The measurements made, pointed to the broad areas needing attention.

Conclusion

The Indicators for patient care and monitoring standards can be used as a self assessment tool for health care setups for standardization and improvement of delivery of health care services.  相似文献   
77.
The aim of the present study is to assess the possible protective effects of thymol and carvacrol against cisplatin (CP)‐induced nephrotoxicity. A single dose of CP {6 mg/kg, intraperitoneally (i.p.)} injected to male rats revealed significant increases in serum urea, creatinine, and tumor necrosis factor alpha levels. It also increased kidney contents of malondialdehyde and caspase‐3 activity with significant reduction in serum albumin, kidney content of reduced glutathione as well as catalase, and superoxide dismutase activity as compared to that of the control group. In contrast, administration of thymol {20 mg/kg, orally (p.o.)} and/or carvacrol (15 mg/kg, p.o.) for 14 days before CP injection and for 7 days after CP administration restored the kidney function and examined oxidative stress parameters. In conclusion, thymol was more effective nephroprotective than carvacrol. Moreover, a combination of thymol and carvacrol had a synergistic nephroprotective effect that might be attributed to antioxidant, anti‐inflammatory, and antiapoptotic activities.  相似文献   
78.
We describe here a new method for specific staining of mast cells using ferroin. Different hamster tissues were fixed in 4% formalin and processed for paraffin embedding. Sections were stained with hematoxylin followed by ferroin acidified with 2.5 N sulfuric acid to pH 4.0. Mast cells stained an intense orange color that contrasted markedly with bluish violet nuclei. High contrast was also observed when ferroin colored sections were counterstained with light green instead of hematoxylin. To evaluate the specificity of the stain, hamster cheek pouch sections were stained with toluidine blue, alcian blue-safranin O, and ferroin. Quantitative evaluation of mast cells stained with the three techniques showed no statistical difference. The simplicity and selectivity of this method is sufficient for image analysis of mast cells.  相似文献   
79.
We have reported that Arabidopsis might have genetically distinct circadian oscillators in multiple cell-types.1 Rhythms of CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter activity are 2.5 h longer in phytochromeB mutants in constant red light and in cryptocrome1 cry2 double mutant (hy4-1 fha-1) in constant blue light than the wild-type.2 However, we found that cytosolic free Ca2+ ([Ca2+]cyt) oscillations were undetectable in these mutants in the same light conditions.1 Furthermore, mutants of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) have short period rhythms of leaf movement but have arrhythmic [Ca2+]cyt oscillations. More important, the timing of cab1-1 (toc1-1) mutant has short period rhythms of CAB2 promoter activity (∼21 h) but, surprisingly, has a wild-type period for circadian [Ca2+]cyt oscillations (∼24 h). In contrast, toc1-2, a TOC1 loss-of-function mutant, has a short period of both CAB2 and [Ca2+]cyt rhythms (∼21 h). Here we discuss the difference between the phenotypes of toc1-1 and toc1-2 and how rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations might be regulated differently.Key words: circadian rhythms, TOC1, multiple oscillators, CAB2, Ca2+ signalling, arabidopsis, circadian [Ca2+]cyt oscillations, aequorin, luciferase, central oscillatorThe plant circadian clock controls a multitude of physiological processes such as photosynthesis, organ and stomatal movements and transition to reproductive growth. A plant clock that is correctly matched to the rhythms in the environment brings about a photosynthetic advantage that results in more chlorophyll, more carbon assimilation and faster growth.3 One of the first circadian clock mutants to be described in plants was the short period timing of cab1-1 (toc1-1), which was identified using the rhythms of luciferase under a CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter as a marker for circadian period.4Circadian rhythms of both CAB2 promoter activity and cytosolic-free Ca2+ ([Ca2+]cyt) oscillations depend on the function of a TOC1, CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL (TOC1/CCA1/LHY) negative feedback loop.5 In tobacco seedlings, CAB2:luciferase (CAB2:luc) rhythms and circadian [Ca2+]cyt oscillations can be uncoupled in undifferentiated calli.6 In Arabidopsis, we reported that toc1-1 has different periods of rhythms of CAB2 promoter activity (∼21 h) and circadian [Ca2+]cyt oscillations (∼24 h). The mutant allele toc1-1 has a base pair change that leads to a full protein that has an amino acid change from Ala to Val in the CCT domain (CONSTANS, CONSTANS-LIKE and TOC1).7 On the other hand, the mutant toc1-2 has short period of both rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations (∼21 h).1,7 This allele has a base pair change that results in changes to preferential mRNA splicing, resulting in a truncated protein with only 59 residues.7 Thus, the mutated CCT domain in toc1-1 might lead to the uncoupling of rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations while the absence of TOC1 in toc1-2 causes the shortening of the period of both rhythms. Indeed, zeitlupe-1 (ztl-1) mutants, that have higher levels of TOC1, have long periods of both rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations.1 The biochemical function of the CCT domain is unknown but it is predicted to play an important role in protein-protein interactions8 and nuclear localization.9One model to explain the period difference of CAB2:luc expression and circadian [Ca2+]cyt oscillation is that the toc1-1 mutation has uncoupled two oscillators in the same cell. Uncoupled oscillators are a predicted outcome of certain mutations in the recently described three-loop mathematical model.1011 However, both rhythms of TOC1 and CCA1/LHY expression, which would be in uncoupled oscillators accordingly to the model, are described as short-period in toc1-1.5 Thus, we have favored the model in which CAB2:luc expression and circadian [Ca2+]cyt oscillation are reporting cell-types with different oscillators that are affected differently by toc1-1.It is possible that TOC1 could interact with a family of cell-type specific proteins. The interaction of TOC1 with each member of the family could be affected differently by the mutation in the CCT domain (Fig. 1). Two-hybrid assays have shown that TOC1 interacts with PIF proteins (PHYTOCHROME INTERACTING FACTOR3 and PIF4) and related PIL proteins (PIF3-LIKE PROTEIN 1, PIL2, PIL5 and PIL6).8 In fact, TOC1 interaction with both PIF3 and PIL1 is stronger when the N-terminus receiver domain is taken out and the CCT domain is left intact.8 Thus, it is possible that TOC1 and different PIF/PIL proteins interact to regulate the central oscillator. This interaction could be impaired by the Ala to Val change in the toc1-1 mutation, leading to the period shortening. However, lines misexpressing PIF3, PIL1 and PIL6 showed no changes in their circadian rhythms.1216Open in a separate windowFigure 1Models of how the toc1-1 mutation might differently affect cell-type specific circadian oscillators. The single mutant toc1-1 have 21 h rhythms of CAB2 promoter activity and 24 h-rhythms of [Ca2+]cyt oscillations. The toc1-1 mutation is a single amino acid change in the CCT domain. The CCT domain is involved in protein-protein interaction and/or nuclear localization. We have proposed that circadian oscillators with different periods are present in different cell-types. The luminescence generated by CAB2 promoter-drived luciferase (from the CAB2:luc) is probably originated in the epidermis and mesophyll cells. In this model, we propose that the mutation on the CCT domain impairs the mutated TOC1 interaction with the hypothetical protein Z in these cells-types. In contrast, in other cell-types, the mutated TOC1 still interacts with other hypothetical proteins (W), despite the mutation in the CCT domain. In those cell-types, the circadian oscillator could still run with a 24 h period for [Ca2+]cyt rhythms (from the 35S:AEQ construct). One possible identity for Z and W are the members of the PHYTOCHROME INTERACTING FACTOR (PIF) related PIF3-LIKE (PIL) family.One possible explanation for the absence of alterations in the period of circadian rhythms in lines misexpressing PIF/PIL is that they only have roles in certain cell-types. As an example, PIL6 and PIF3 are involved with flowering time and hypocotyl growth in red light1215 while PIL1 and PIL2 are involved with hypocotyl elongation in shade-avoidance responses.16 Both hypocotyl growth and flowering time require cell-type specific regulation: vascular bundle cells in the case of the flowering time17 and the cells in the shoot in the case of the hypocotyl elongation.16 If TOC1 interaction with certain PIF/PIL is indeed cell-type specific, the mutated CCT domain found in the toc1-1 mutant could affect the clock in different ways, depending on the type of PIF/PIL protein expressed in each cell-type. Therefore, a question that arises is: which cell-types are sensitive to the toc1-1 mutation?There is evidence that CAB2 and CATALASE3 (CAT3) are regulated by two oscillators that respond differently to temperature signals.18 These genes might be regulated by two distinct circadian oscillators within the same tissues or a single cell.18 Interestingly, the spatial patterns of expression of CAB2 and CATALASE3 overlap in the mesophyll of the cotyledons.18 Furthermore, rhythms of CAB2 and CHALCONE SYNTHASE (CHS) promoter activity have different periods and they are equally affected by toc1-1 mutation.19 Whereas CAB2 is mainly expressed in the mesophyll cells, CHS is mainly expressed in epidermis and root cells.19 However, rhythms of AEQUORIN luminescence, which reports [Ca2+]cyt oscillation, were insensitive to toc1-1 mutation and appear to come from the whole cotyledon.20 One cell-type which is found in the whole cotyledon but is distinct from either mesophyll or epidermis cells is the vascular tissue and associated cells.Another approach to determine which cell-types are insensitive to toc1-1 mutation is to compare the toc1-1 and toc1-2 phenotypes. The period of circadian [Ca2+]cyt oscillations is not the only phenotype that is different in toc1-1 and toc1-2 mutants. Rhythms in CAB2 promoter activity in constant red light are short period in toc1-1 but arrhythmic in toc1-2.21,22 COLD, CIRCADIAN RHYTHM AND RNA BINDING 2/GLYCINE-RICH RNA BINDING PROTEIN 7 (CCR2/GRP7) is also arrhythmic in toc1-2 but short period in toc1-1 in constant darkness.7,22 When the length of the hypocotyl was measured for both toc1-1 and toc1-2 plants exposed to various intensities of red light, only toc1-2 had a clear reduction in sensitivity to red light. Therefore, toc1-2 has long hypocotyl when maintained in constant red light while hypocotyl length in toc1-1 is nearly identical to that in the wild-type.22 These differences may allow us to separate which cell-types are sensitive to the toc1-1 mutation and which not.Hypocotyl growth is regulated by a large number of factors such as light, gravity, auxin, cytokinins, ethylene, gibberellins and brassinosteroids.23 There is also a correlation between the size of the hypocotyl in red light and defects in the circadian signaling network.24,25 The fact that toc1-1 has different hypocotyl sizes from toc1-2 suggests that circadian [Ca2+]cyt oscillations could be involved in the light-dependent control of hypocotyl growth. Circadian [Ca2+]cyt oscillations might encode temporal information to control cell expansion and hypocotyl growth.2628 toc1-1 have short-period rhythms of hypocotyl elongation, which indicates that the cells in the hypocotyl have a 21 h oscillator.29 However, toc1-1 might also have a wild-type hypocotyl length in continuous red light because cells which generate the signal to regulate hypocotyl growth might have 24 h oscillators.The toc1-1 mutation was the first to be directly associated with the plant circadian clock, revitalizing the field of study.4 Now, by either uncoupling two feedback loops or by distinct TOC1 protein-protein interaction in different cell-types, toc1-1 has shown new properties of the circadian clock that may deepen our understanding of this system.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号