全文获取类型
收费全文 | 6217篇 |
免费 | 363篇 |
国内免费 | 2篇 |
专业分类
6582篇 |
出版年
2023年 | 14篇 |
2022年 | 36篇 |
2021年 | 95篇 |
2020年 | 64篇 |
2019年 | 65篇 |
2018年 | 112篇 |
2017年 | 81篇 |
2016年 | 153篇 |
2015年 | 207篇 |
2014年 | 267篇 |
2013年 | 444篇 |
2012年 | 425篇 |
2011年 | 418篇 |
2010年 | 275篇 |
2009年 | 283篇 |
2008年 | 464篇 |
2007年 | 421篇 |
2006年 | 419篇 |
2005年 | 425篇 |
2004年 | 444篇 |
2003年 | 393篇 |
2002年 | 335篇 |
2001年 | 50篇 |
2000年 | 40篇 |
1999年 | 50篇 |
1998年 | 75篇 |
1997年 | 62篇 |
1996年 | 39篇 |
1995年 | 53篇 |
1994年 | 46篇 |
1993年 | 36篇 |
1992年 | 36篇 |
1991年 | 15篇 |
1990年 | 19篇 |
1989年 | 22篇 |
1988年 | 14篇 |
1987年 | 18篇 |
1986年 | 15篇 |
1985年 | 14篇 |
1984年 | 15篇 |
1983年 | 13篇 |
1982年 | 21篇 |
1981年 | 21篇 |
1980年 | 12篇 |
1979年 | 12篇 |
1978年 | 6篇 |
1977年 | 11篇 |
1976年 | 6篇 |
1974年 | 5篇 |
1969年 | 4篇 |
排序方式: 共有6582条查询结果,搜索用时 31 毫秒
141.
Toshiaki Fukui Kenta Chou Kazuo Harada Izumi Orita Yasumune Nakayama Takeshi Bamba Satoshi Nakamura Eiichiro Fukusaki 《Metabolomics : Official journal of the Metabolomic Society》2014,10(2):190-202
This study describes metabolite profiles of Ralstonia eutropha H16 focusing on biosynthesis of polyhydroxyalkanoates (PHAs), bacterial polyesters attracted as biodegradable bio-based plastics. As CoA-thioesters are important intermediates in PHA biosynthesis, four kinds of acyl-CoAs with medium chain length were prepared and used to establish analytical conditions for capillary electrophoresis-electron spray ionization-tandem mass spectrometry (CE–ESI-MS/MS). Metabolites were extracted from R. eutropha cells in growth, PHA production, and stationary phases on fructose and PHA production phase on octanoate, and subjected to stable isotope dilution-based comparative quantification by multiple reaction monitoring using CE–ESI-MS/MS and 13C-labeled metabolites prepared by extraction from R. eutropha mutant grown on U-13C6-glucose. This procedure allowed to quantify relative changes of 94 ionic metabolites including CoA-thioesters. Hexose-phosphates except for glucose 1-phosphate were decreased in the PHA production phase than in the growth phase, suggesting reduced flux of sugar degradation after the cell growth. Several intermediates in TCA cycle and gluconeogenesis were increased in the PHA production phase on octanoate. Interestingly, ribulose 1,5-bisphosphate were detected in all the samples examined, raising possibilities of CO2 fixation by Calvin–Benson–Bassham cycle in this bacterium even under heterotrophic growth conditions. Turnover of acyl moieties through β-oxidation was suggested to be active on fructose, as CoA-thioesters of C6 and C8 were detected in the fructose-grown cells. In addition, major metabolic pools in R. eutropha cells were estimated from the signal intensities. The results of the present study provided new insights into global metabolisms in PHA-producing R. eutropha. 相似文献
142.
Yasukazu Nakamura Takakazu Kaneko Erika Asamizu Tomohiko Kato Shusei Sato Satoshi Tabata 《DNA research》2002,9(2):63-70
Sixty-five TAC (transformation-competent artificial chromosomes) clones were selected from a genomic library of Lotus japonicus accession MG-20 based on the sequence information of expressed sequences tags (ESTs), cDNA and gene information, and their nucleotide sequences were determined. The average insert size of the TAC clone was approximately 100 kb, and the total length of the sequenced regions in this study is 6,556,100 bp. Together with the nucleotide sequences of 56 TAC clones previously reported, the regions sequenced so far total 12,029,295 bp. By comparison with the sequences in protein and EST databases and by analysis with computer programs for gene modeling, a total of 711 potential protein-encoding genes with known or predicted functions, 239 gene segments and 90 pseudogenes were identified in the newly sequenced regions. The average gene density assigned so far was 1 gene/9140 bp. The average length of the assigned genes was 2.6 kb, which is considerably larger than that assigned in the Arabidopsis thaliana genome (1.9 kb for 6451 genes). Introns were identified in approximately 73% of the potential genes, and the average number and length of the introns per gene were 3.4 and 377 bp, respectively. Simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers were generated based on the nucleotide sequences of the genomic clones obtained, and each clone was mapped onto the linkage map using the F2 mapping population derived from a cross of two accessions of L. japonicus, Gifu B-129 and Miyakojima MG-20. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/. 相似文献
143.
Yageta Y Ishii Y Morishima Y Masuko H Ano S Yamadori T Itoh K Takeuchi K Yamamoto M Hizawa N 《Journal of virology》2011,85(10):4679-4690
Influenza virus is a common respiratory tract viral infection. Although influenza can be fatal in patients with chronic pulmonary diseases such as chronic obstructive pulmonary disease, its pathogenesis is not fully understood. The Nrf2-mediated antioxidant system is essential to protect the lungs from oxidative injury and inflammation. In the present study, we investigated the role of Nrf2 in protection against influenza virus-induced pulmonary inflammation after cigarette smoke exposure with both in vitro and in vivo approaches. For in vitro analyses, peritoneal macrophages isolated from wild-type and Nrf2-deficient mice were treated with poly(I:C) and/or cigarette smoke extract. For in vivo analysis, these mice were infected with influenza A virus with or without exposure to cigarette smoke. In Nrf2-deficient macrophages, NF-κB activation and the induction of its target inflammatory genes were enhanced after costimulation with cigarette smoke extract and poly(I:C) compared with wild-type macrophages. The induction of antioxidant genes was observed for the lungs of wild-type mice but not those of Nrf2-deficient mice after cigarette smoke exposure. Cigarette smoke-exposed Nrf2-deficient mice showed higher rates of mortality than did wild-type mice after influenza virus infection, with enhanced peribronchial inflammation, lung permeability damage, and mucus hypersecretion. Lung oxidant levels and NF-κB-mediated inflammatory gene expression in the lungs were also enhanced in Nrf2-deficient mice. Our data indicate that the antioxidant pathway controlled by Nrf2 is pivotal for protection against the development of influenza virus-induced pulmonary inflammation and injury under oxidative conditions. 相似文献
144.
Liu B Yang P Ye Y Zhou Y Li L Tashiro S Onodera S Ikejima T 《Free radical research》2011,45(7):835-847
Silibinin mostly has been used as hepatoprotectants, but it has other interesting activities, e.g. anti-cancer, cardial protective and brain-protective activities. A previous study demonstrated that silibinin protected amyloid β (Aβ)-induced mouse cognitive disorder by behavioural pharmacological observation. This study assessed the effect of silibinin on sodium nitroprusside (SNP)-treated rat pheochromocytoma PC12 cells. Subsequent morphologic observation, flow cytometric analysis and Western blot analysis indicated that treatment with SNP significantly induced apoptosis in PC12 cells. However, silibinin eliminated the apoptotic effect by reactive oxygen species (ROS) generation, especially hydroxyl free radical. Silibinin-induced autophagy through ROS generation when exerting a protective effect and silibinin-induced autophagy also enhanced the ROS generation since 3-methyladenine (3-MA), a specific autophagy inhibitor, decreased the ROS generation and rapamycin, an autophagy inducer, enhanced the ROS generation. Therefore, there exists a positive feedback loop between autophagy and ROS generation. Autophagy prevented SNP-induced apoptosis, since the addition of 3-MA significantly eliminated the protective effect of silibinin. This protective effect was attributed to the generation of ROS and its two downstream Ras/PI3K/NF-κB and Ras/Raf/MEK/ERK pathways. Both prevented PC12 cells from apoptosis. The PI3K/NF-κB pathway induced autophagy to protect PC12 cells, but the Raf/MEK/ERK pathway directly protected PC12 cells bypassing the autophagic effect. 相似文献
145.
Rahman S Ishizuka-Katsura Y Arai S Saijo S Yamato I Toyama M Ohsawa N Inoue M Honda K Terada T Shirouzu M Yokoyama S Iwata S Murata T 《Protein expression and purification》2011,78(2):181-188
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that is involved in both intra- and extracellular acidification processes throughout human body. Subunits constituting the peripheral stalk of the V-ATPase are known to have several isoforms responsible for tissue/cell specific different physiological roles. To study the different interaction of these isoforms, we expressed and purified the isoforms of human V-ATPase peripheral stalk subunits using Escherichia coli cell-free protein synthesis system: E1, E2, G1, G2, G3, C1, C2, H and N-terminal soluble part of a1 and a2 isoforms. The purification conditions were different depending on the isoforms, maybe reflecting the isoform specific biochemical characteristics. The purified proteins are expected to facilitate further experiments to study about the cell specific interaction and regulation and thus provide insight into physiological meaning of the existence of several isoforms of each subunit in V-ATPase. 相似文献
146.
Masami Matsumoto Yukihiro Shoyama Itsuo Nishioka Hisashi Iwai Satoshi Wakimoto 《Plant cell reports》1989,7(8):636-638
Virus free plants of Rehmannia glutinosa Libosch. var. purpurea Makino were obtained through meristem tip tissue cultures from plants infected with a mixture of tabocco mosaic virus(TMV), a member of the carlavirus group, and an unknown spherical virus. The re-infection rate of the virus free plants by TMV in the field was determined by enzyme linked immunosorbent assay(ELISA). Twenty seven percent of the plants were re-infected during the first year, 31 % by the end of second year, and 63 % by the end of the third year. The yield of root and iridoid glycoside contents gradually decreased each year. These results led to the conclusion that virus infection causes marked decrease of the yield of roots and productivity of secondary metabolites. 相似文献
147.
Mio Takeuchi Takeshi Komai Satoshi Hanada Hideyuki Tamaki Susumu Tanabe Yoshinori Miyachi 《Geomicrobiology journal》2013,30(2):104-118
Microbial communities in ancient marine sediments composed of clay and silt obtained from the terrestrial subsurface were phylogenetically analyzed based on their 16S rRNA gene sequences. Chloroflexi and Miscellaneous Crenarchaeotic Group were predominant in bacterial and archaeal clone libraries, respectively. Of 44 operational taxonomic units (OTUs) that had close relatives in the database, 30 were close to sequences obtained from marine environments. Some sequences belonged to the candidate groups JS1, ANME-I, and Marine Benthic Group-C, which are typically found in marine sediments. Low chloride concentrations in the sediments suggest that these marine-affiliated sequences may not reflect currently active microbial communities. Our results indicate the existence of long-term preserved DNA or descendants of ancient oceanic microbial components in subsurface muddy sediments in a temperate region, which may reflect indigenous population of paleoenvironments. 相似文献
148.
149.
Yuki Hatanaka Natsumi Shimizu Satoshi Nishikawa Mikiko Tokoro Seung-Wook Shin Takuji Nishihara Tomoko Amano Masayuki Anzai Hiromi Kato Tasuku Mitani Yoshihiko Hosoi Satoshi Kishigami Kazuya Matsumoto 《PloS one》2013,8(4)
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote. 相似文献
150.
Akihito Tanaka Knut Woltjen Katsuya Miyake Akitsu Hotta Makoto Ikeya Takuya Yamamoto Tokiko Nishino Emi Shoji Atsuko Sehara-Fujisawa Yasuko Manabe Nobuharu Fujii Kazunori Hanaoka Takumi Era Satoshi Yamashita Ken-ichi Isobe En Kimura Hidetoshi Sakurai 《PloS one》2013,8(4)
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs. 相似文献