首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6540篇
  免费   385篇
  国内免费   2篇
  6927篇
  2023年   15篇
  2022年   35篇
  2021年   99篇
  2020年   63篇
  2019年   68篇
  2018年   118篇
  2017年   83篇
  2016年   157篇
  2015年   217篇
  2014年   279篇
  2013年   467篇
  2012年   436篇
  2011年   432篇
  2010年   279篇
  2009年   292篇
  2008年   481篇
  2007年   437篇
  2006年   437篇
  2005年   437篇
  2004年   463篇
  2003年   408篇
  2002年   345篇
  2001年   65篇
  2000年   57篇
  1999年   62篇
  1998年   80篇
  1997年   66篇
  1996年   46篇
  1995年   58篇
  1994年   47篇
  1993年   41篇
  1992年   46篇
  1991年   26篇
  1990年   33篇
  1989年   27篇
  1988年   16篇
  1987年   17篇
  1986年   18篇
  1985年   17篇
  1984年   15篇
  1983年   18篇
  1982年   24篇
  1981年   23篇
  1980年   13篇
  1979年   12篇
  1978年   8篇
  1977年   11篇
  1976年   8篇
  1974年   5篇
  1969年   6篇
排序方式: 共有6927条查询结果,搜索用时 15 毫秒
51.
Kinetic studies of the isomerization reaction of horse heart ferricytochrome c between pH 8.5 and pH 12.1 have been carried out by using stopped-flow and rapid scanning stopped-flow techniques. Below pH 10, our results were in good agreement with the scheme proposed earlier (Davis, L. A., Schejter, A. and Hess, G. P. (1974) J. Biol. Chem. 249, 2624–2632). Above pH 10, another faster first-order process was observed, which suggested the existence of a transient species in the isomerization reaction between the species with and without a 695 nm band. The probable scheme of the isomerization reaction is considered to be
where H denotes a proton, the colored forms are the species predominant at neutral pH with a 695 nm band and the noncolored forms are the species without a 695 nm band. The transient species has a small 695 nm absorbance which suggests that the sixth ligand is still Met-80, although the protein conformation might be different from that at neutral pH.  相似文献   
52.
Currently, gapmer antisense oligonucleotide (ASO) therapeutics are under clinical development for the treatment of various diseases, including previously intractable human disorders; however, they have the potential to induce hepatotoxicity. Although several groups have reported the reduced hepatotoxicity of gapmer ASOs following chemical modifications of sugar residues or internucleotide linkages, only few studies have described nucleobase modifications to reduce hepatotoxicity. In this study, we introduced single or multiple combinations of 17 nucleobase derivatives, including four novel derivatives, into hepatotoxic locked nucleic acid gapmer ASOs and examined their effects on hepatotoxicity. The results demonstrated successful identification of chemical modifications that strongly reduced the hepatotoxicity of gapmer ASOs. This approach expands the ability to design gapmer ASOs with optimal therapeutic profiles.  相似文献   
53.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
54.
The complete nucleotide sequence of the genome of a symbiotic bacterium Bradyrhizobium japonicum USDA110 was determined. The genome of B. japonicum was a single circular chromosome 9,105,828 bp in length with an average GC content of 64.1%. No plasmid was detected. The chromosome comprises 8317 potential protein-coding genes, one set of rRNA genes and 50 tRNA genes. Fifty-two percent of the potential protein genes showed sequence similarity to genes of known function and 30% to hypothetical genes. The remaining 18% had no apparent similarity to reported genes. Thirty-four percent of the B. japonicum genes showed significant sequence similarity to those of both Mesorhizobium loti and Sinorhizobium meliloti, while 23% were unique to this species. A presumptive symbiosis island 681 kb in length, which includes a 410-kb symbiotic region previously reported by G?ttfert et al., was identified. Six hundred fifty-five putative protein-coding genes were assigned in this region, and the functions of 301 genes, including those related to symbiotic nitrogen fixation and DNA transmission, were deduced. A total of 167 genes for transposases/104 copies of insertion sequences were identified in the genome. It was remarkable that 100 out of 167 transposase genes are located in the presumptive symbiotic island. DNA segments of 4 to 97 kb inserted into tRNA genes were found at 14 locations in the genome, which generates partial duplication of the target tRNA genes. These observations suggest plasticity of the B. japonicum genome, which is probably due to complex genome rearrangements such as horizontal transfer and insertion of various DNA elements, and to homologous recombination.  相似文献   
55.
The effects of local population density, sex morph [protogynous (PG) or protandrous (PA)], and individual tree size on the demographic processes of seed production were investigated in a heterodichogamous maple, Acer mono Maxim. var. Marmoratum (Nichols.) Hara f. dissectum, in a temperate forest of Japan. As the distance from conspecific reproductive adults increased, the percentage of immature seed fall and empty seeds increased significantly, indicating higher pollination success along with local population density. Although the difference was not distinct, pollination success was affected by the local population density of the reciprocal sex morph rather than that of both sex morphs. The trees at higher local population density sites suffered higher seed mortality due to predation and decay, and tended to produce smaller seeds. Thus, the impacts of local population density operated both positively and negatively on reproduction. As a factor of individual traits, tree size scarcely affected any demographic processes. On the other hand, sex morph did affect pollination success. Trees of PG type had lower immature seed fall than those of PA type, suggesting that the former has higher efficiency of pollen acceptance than the latter. The results on seed demography presented here partly support previous suggestions that heterodichogamous plants exhibit reciprocal cross-pollination and gender specialization as reproductive traits.  相似文献   
56.
57.
It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo.  相似文献   
58.
To identify an orally available fluoropyrimidine having efficacy and safety profiles greatly improved over those of parenteral 5-fluorouracil (5-FU: 1), we designed a 5-FU prodrug that would pass intact through the intestinal mucisa and be sequentially converted to 5-FU by enzymes that are highly expressed in the human liver and then in tumors. Among various N4-substituted 5'-deoxy-5-fluorocytidine derivatives, a series of N4-alkoxycarbonyl derivatives were hydrolyzed to 5'-deoxy-5-fluorocytidine (5'-DFCR: 8) specifically by carboxylesterase, which exists preferentially in the liver in humans and monkeys. Particularly, derivatives having an N4-alkoxylcarbonyl moiety with a C4-C6 alkyl chain were the most susceptible to the human carboxylesterase. Those were then converted to 5'-deoxy-5-fluorouridine (5'-DFUR: 4) by cytidine deaminase highly expressed in the liver and solid tumors and finally to 5-FU by thymidine phosphorylase (dThdPase) preferentially located in tumors. When administered orally to monkeys, a derivative having the N4-alkoxylcarbonyl moiety with a C5 alkyl chain (capecitabine: 6) The highest AUC and Cmax for plasma 5'-DFUR. In tests with various human cancer xenograft models, capecitabine was more efficacious at wider dose ranges than either 5-FU or 5'-DFUR and was significantly less toxic to the intestinal tract than the others in monkeys.  相似文献   
59.
The industrial yeast Candida utilis can grow on media containing xylose as sole carbon source, but cannot ferment it to ethanol. The deficiency might be due to the low activity of NADPH-preferring xylose reductase (XR) and NAD(+)-dependent xylitol dehydogenase (XDH), which convert xylose to xylulose, because C. utilis can ferment xylulose. We introduced multiple site-directed mutations in the coenzyme binding sites of XR and XDH derived from the xylose-fermenting yeast Candida shehatae to alter their coenzyme specificities. Several combinations of recombinant and native XRs and XDHs were tested. Highest productivity was observed in a strain expressing CsheXR K275R/N277D (NADH-preferring) and native CsheXDH (NAD(+)-dependent), which produced 17.4 g/L of ethanol from 50 g/L of xylose in 20 h. Analysis of the genes responsible for ethanol production from the xylose capacity of C. utilis indicated that the introduction of CsheXDH was essential, while overexpression of CsheXR K275R/N277D improved efficiency of ethanol production.  相似文献   
60.
Controlling cell proliferation during cell culturing is an effective way to improve the production yield in mammalian cell culture. We examined the effect of temperature shifts (TS) under pH control conditions in Chinese hamster ovary cells. When we shifted the culture temperature from 37 °C to 31 °C before a stationary phase at pH 6.8 (TS/pH 6.8), cell viability remained high, and the final human monoclonal antibody (hMab) concentration increased to 2.3 times that in the culture remaining at 37 °C. However, there were no significant effects on the cell viability or production yield with the same TS at pH 7.0 (TS/pH 7.0). The average specific hMab productivity and mRNA level of TS/pH 7.0 were the same as that of TS/pH 6.8. The control of cell growth by the TS or the addition of rapamycin was effective in the maintenance of cell viability, but there was no significant increase of the average specific hMab productivity in the culture where cell proliferation was controlled with rapamycin. The hMab mRNA concentration decreased to 55%–65% at a 37 °C culture with the addition of actinomycin D. In contrast, actinomycin D did not affect the mRNA level in the TS culture. This result suggested that the increase in the mRNA level in the TS condition was caused by an increase in mRNA stability. In this study, we show that TS can produce two unrelated effects: a prolongation of cell longevity and an improvement in mRNA stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号