首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9650篇
  免费   631篇
  国内免费   5篇
  10286篇
  2022年   55篇
  2021年   120篇
  2020年   79篇
  2019年   82篇
  2018年   132篇
  2017年   106篇
  2016年   202篇
  2015年   292篇
  2014年   364篇
  2013年   610篇
  2012年   608篇
  2011年   576篇
  2010年   359篇
  2009年   366篇
  2008年   625篇
  2007年   591篇
  2006年   543篇
  2005年   562篇
  2004年   574篇
  2003年   517篇
  2002年   483篇
  2001年   178篇
  2000年   174篇
  1999年   155篇
  1998年   129篇
  1997年   109篇
  1996年   71篇
  1995年   88篇
  1994年   79篇
  1993年   76篇
  1992年   113篇
  1991年   90篇
  1990年   87篇
  1989年   107篇
  1988年   68篇
  1987年   76篇
  1986年   69篇
  1985年   85篇
  1984年   82篇
  1983年   51篇
  1982年   58篇
  1981年   49篇
  1980年   28篇
  1979年   56篇
  1978年   35篇
  1977年   47篇
  1976年   28篇
  1975年   29篇
  1974年   31篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
202.
203.
The complete nucleotide sequence of the genome of a symbiotic bacterium Bradyrhizobium japonicum USDA110 was determined. The genome of B. japonicum was a single circular chromosome 9,105,828 bp in length with an average GC content of 64.1%. No plasmid was detected. The chromosome comprises 8317 potential protein-coding genes, one set of rRNA genes and 50 tRNA genes. Fifty-two percent of the potential protein genes showed sequence similarity to genes of known function and 30% to hypothetical genes. The remaining 18% had no apparent similarity to reported genes. Thirty-four percent of the B. japonicum genes showed significant sequence similarity to those of both Mesorhizobium loti and Sinorhizobium meliloti, while 23% were unique to this species. A presumptive symbiosis island 681 kb in length, which includes a 410-kb symbiotic region previously reported by G?ttfert et al., was identified. Six hundred fifty-five putative protein-coding genes were assigned in this region, and the functions of 301 genes, including those related to symbiotic nitrogen fixation and DNA transmission, were deduced. A total of 167 genes for transposases/104 copies of insertion sequences were identified in the genome. It was remarkable that 100 out of 167 transposase genes are located in the presumptive symbiotic island. DNA segments of 4 to 97 kb inserted into tRNA genes were found at 14 locations in the genome, which generates partial duplication of the target tRNA genes. These observations suggest plasticity of the B. japonicum genome, which is probably due to complex genome rearrangements such as horizontal transfer and insertion of various DNA elements, and to homologous recombination.  相似文献   
204.
To reveal the mechanisms of previously reported lung-specific DNA strand scissions in murine after oral administration of dimethylarsinic acid (DMAA), a main metabolite of inorganic arsenics in mammals, the ultimate substance causing DNA lesion was investigated using dimethylarsine which was a further metabolite of DMAA. The alkaline elution assay using 3H-labeled DNA showed that a major portion of the strand breaks was not suppressed by SOD and catalase, suggesting an ultimate substance other than active oxygen participated in the DNA damage. By ESR analysis, a radical estimated to be (CH3)2AsOO. was detected as a reaction product of dimethylarsine and molecular oxygen. This peroxyl radical, rather than active oxygen, was assumed to play a major role in DNA damage.  相似文献   
205.
206.
207.
An oxalate-bridged binuclear iron(III) complex, [(acac)2Fe(μ-ox)Fe(acac)2], (acac=acetylacetonate anion and ox2−=oxalate anion) was prepared. The complex crystallized as two types of crystals under different conditions: one had 1,2-dichloroethane as a solvent molecule of crystallization 2, the other did not 1. Both compounds have been characterized by X-ray crystallography, infrared spectroscopy, and thermogravimetric analysis. Compound 1 has also been characterized by UV-Vis and 1H NMR spectroscopies, mass spectrometry, and electrochemistry. In both crystals, each iron(III) is coordinated in an octahedral arrangement by the oxygen atoms of an oxalate-bridging ligand and four oxygen atoms belonging to peripheral acac ligands in an octahedral arrangement. The intermetallic distance of Fe?Fe is 5.4368(9) Å in 1 and 5.438(2) Å in 2. Two iron(III) ions in each crystal are bridged by the oxalate and both lie in the oxalate-plane. The results of thermal analyses imply that the thermal stability of 2 is lower than that of 1. Cyclic voltammograms of 1 in acetonitrile and dichloromethane at low temperature showed two consecutive, quasi-Nernstian, one-electron reduction steps corresponding to the reduction of FeIII-FeIII to FeIII-FeII followed by the reduction of FeIII-FeII to FeII-FeII. The electrochemical comproportionation constants (Kc) of the equilibrium (FeIII-FeIII) + (FeII-FeII) ? 2(FeIII-FeII) are 108.9 in acetonitrile medium and 108.5 in dichloromethane, respectively. The considerably large Kc values indicate that the main factor contributing to the stabilization of the FeIII-FeII mixed-valence state is electronic delocalization through the oxalate-bridge.  相似文献   
208.
The effects of local population density, sex morph [protogynous (PG) or protandrous (PA)], and individual tree size on the demographic processes of seed production were investigated in a heterodichogamous maple, Acer mono Maxim. var. Marmoratum (Nichols.) Hara f. dissectum, in a temperate forest of Japan. As the distance from conspecific reproductive adults increased, the percentage of immature seed fall and empty seeds increased significantly, indicating higher pollination success along with local population density. Although the difference was not distinct, pollination success was affected by the local population density of the reciprocal sex morph rather than that of both sex morphs. The trees at higher local population density sites suffered higher seed mortality due to predation and decay, and tended to produce smaller seeds. Thus, the impacts of local population density operated both positively and negatively on reproduction. As a factor of individual traits, tree size scarcely affected any demographic processes. On the other hand, sex morph did affect pollination success. Trees of PG type had lower immature seed fall than those of PA type, suggesting that the former has higher efficiency of pollen acceptance than the latter. The results on seed demography presented here partly support previous suggestions that heterodichogamous plants exhibit reciprocal cross-pollination and gender specialization as reproductive traits.  相似文献   
209.
The AGAMOUS gene of Arabidopsis thaliana is a homeotic gene involved in the development of stamens and carpels. This gene encodes a putative DNA-binding protein sharing a homologous region with the DNA-binding domains, MADS boxes, of yeast MCM1 and mammalian SRF. To examine the DNA-binding activity of the AGAMOUS protein, double-stranded oligonucleotides with random sequences of 40 bp in the central region were synthesized and mixed with the AGAMOUS MADS domain overproduced in Escherichia coli . Oligonucleotides which bound to the MADS domain were recovered by repeated immunoprecipitation with an antibody which recognizes the overproduced protein. From a comparison of the recovered DNA sequences, the consensus sequence of the high-affinity binding-sites for the AGAMOUS MADS domain was determined to be 5'-TT(A/T/G) CC(A/T)6GG(A/T/C)AA-3'. DNase I footprinting and methylation interference experiments showed that the MADS domain binds to this motif. Comparisons with the binding-site sequences of other MADS-box proteins revealed that the MCM1 binding-sites in a-mating type-specific promoters of Saccharomyces cerevisiae show similarities with the binding-site sequence of the AGAMOUS MADS domain. A synthetic MCM1 binding-site in the upstream region of the STE2 gene is recognized by the AGAMOUS MADS domain.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号