首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6288篇
  免费   365篇
  国内免费   2篇
  6655篇
  2023年   14篇
  2022年   35篇
  2021年   95篇
  2020年   64篇
  2019年   64篇
  2018年   110篇
  2017年   81篇
  2016年   152篇
  2015年   209篇
  2014年   269篇
  2013年   448篇
  2012年   426篇
  2011年   428篇
  2010年   278篇
  2009年   286篇
  2008年   464篇
  2007年   425篇
  2006年   421篇
  2005年   429篇
  2004年   443篇
  2003年   397篇
  2002年   339篇
  2001年   52篇
  2000年   45篇
  1999年   60篇
  1998年   76篇
  1997年   65篇
  1996年   42篇
  1995年   55篇
  1994年   46篇
  1993年   36篇
  1992年   37篇
  1991年   18篇
  1990年   19篇
  1989年   23篇
  1988年   14篇
  1987年   15篇
  1986年   14篇
  1985年   15篇
  1984年   16篇
  1983年   13篇
  1982年   21篇
  1981年   21篇
  1980年   11篇
  1979年   13篇
  1978年   6篇
  1977年   12篇
  1976年   7篇
  1974年   5篇
  1969年   5篇
排序方式: 共有6655条查询结果,搜索用时 15 毫秒
71.
We developed a method to measure the rupture forces between antibody and antigen by atomic force microscopy (AFM). Previous studies have reported that in the measurement of antibody–antigen interaction using AFM, the specific intermolecular forces are often obscured by nonspecific adhesive binding forces between antibody immobilized cantilever and substrate surfaces on which antigen or nonantigen are fixed. Here, we examined whether detergent and nonreactive protein, which have been widely used to reduce nonspecific background signals in ordinary immunoassay and immunoblotting, could reduce the nonspecific forces in the AFM measurement. The results showed that, in the presence of both nonreactive protein and detergent, the rupture forces between anti-ferritin antibodies immobilized on a tip of cantilever and ferritin (antigen) on the substrate could be successfully measured, distinguishing from nonspecific adhesive forces. In addition, we found that approach/retraction velocity of the AFM cantilever was also important in the reduction of nonspecific adhesion. These insights will contribute to the detection of specific molecules at nanometer scale region and the investigation of intermolecular interaction by the use of AFM.  相似文献   
72.
73.
MethodsMice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups.ResultsLevels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice.ConclusionThese results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.  相似文献   
74.
The unicellular red alga Cyanidium caldarium is tolerant to high levels of various metal ions. Cells of this alga cultured with divalent metal ions at 5 mM contained an elevated concentration of each metal, with the highest level for Zn followed by Mn > Ni > Cu. This order is in fair agreement with the toxicity levels reported previously, with the exception of Mn, which shows a toxicity level comparable to that of Ni. Transmission electron microscopy indicated the presence of electron-dense bodies in the algal cells, and elemental analysis by energy dispersive X-ray spectrometry showed high levels of Fe and P in these bodies. Accumulation of Zn was found in these particles in Zn-treated algal cells, whereas no such deposition was found for Cu, Ni, or Mn in cells treated with the respective metals. Although trapping of Zn in the intracellular bodies may contribute to reduction of metal activity in the cells, this effect can be overcome by high intracellular levels of Zn that result in a high degree of toxicity. The correlation between intracellular concentration and toxic levels of metal ions implies that the reduced incorporation of the metals is a major detoxification mechanism in this alga.  相似文献   
75.
Sleep and Biological Rhythms - There have been only a few studies on the relationship between sleep disturbances and somatic and psychological complaints in Japanese people. In this study, we...  相似文献   
76.
77.
Recent studies in streams and ponds have demonstrated that the distribution and biomass of aquatic organisms can be estimated by detection and quantification of environmental DNA (eDNA). In more open systems such as seas, it is not evident whether eDNA can represent the distribution and biomass of aquatic organisms because various environmental factors (e.g., water flow) are expected to affect eDNA distribution and concentration. To test the relationships between the distribution of fish and eDNA, we conducted a grid survey in Maizuru Bay, Sea of Japan, and sampled surface and bottom waters while monitoring biomass of the Japanese jack mackerel (Trachurus japonicus) using echo sounder technology. A linear model showed a high R2 value (0.665) without outlier data points, and the association between estimated eDNA concentrations from the surface water samples and echo intensity was significantly positive, suggesting that the estimated spatial variation in eDNA concentration can reflect the local biomass of the jack mackerel. We also found that a best-fit model included echo intensity obtained within 10–150 m from water sampling sites, indicating that the estimated eDNA concentration most likely reflects fish biomass within 150 m in the bay. Although eDNA from a wholesale fish market partially affected eDNA concentration, we conclude that eDNA generally provides a ‘snapshot’ of fish distribution and biomass in a large area. Further studies in which dynamics of eDNA under field conditions (e.g., patterns of release, degradation, and diffusion of eDNA) are taken into account will provide a better estimate of fish distribution and biomass based on eDNA.  相似文献   
78.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   
79.
80.
Dehydroepiandrosterone (DHEA) is known to improve hyperglycemia in diabetic db/db mice that are obese and insulin resistant. In a previous study, we reported that DHEA suppresses the elevated hepatic gluconeogenic glucose-6-phosphatase (G6Pase) activity and gene expression in C57BL/KsJ-db/db mice. In the present study, we evaluated the total amount of gluconeogenesis using NaH[(14)C]CO(3) and hepatic glucose production using fructose as a substrate in primary cultured hepatocytes. Despite hyperinsulinemia, the glucose production of db/db mice in the total body and hepatocytes was elevated as compared to their heterozygote littermate C57BL/KsJ-db/+m mice. Administration of DHEA significantly decreased the blood glucose level and increased the plasma insulin level in db/db mice. Administration of DHEA decreased the elevated total body and hepatic glucose production in db/db mice. In addition, the glucose production in the primary cultured hepatocytes of db/db mice was decreased significantly by the direct addition of DHEA or DHEA-S to the medium. These results suggest that administration of DHEA suppresses the elevated total body and hepatic glucose production in db/db mice, and this effect on the liver is considered to result from increased plasma insulin and DHEA or DHEA-S itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号