首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6753篇
  免费   379篇
  国内免费   5篇
  2023年   12篇
  2022年   32篇
  2021年   102篇
  2020年   65篇
  2019年   69篇
  2018年   118篇
  2017年   90篇
  2016年   166篇
  2015年   226篇
  2014年   276篇
  2013年   488篇
  2012年   460篇
  2011年   441篇
  2010年   289篇
  2009年   300篇
  2008年   491篇
  2007年   454篇
  2006年   449篇
  2005年   464篇
  2004年   478篇
  2003年   428篇
  2002年   365篇
  2001年   53篇
  2000年   47篇
  1999年   58篇
  1998年   81篇
  1997年   69篇
  1996年   53篇
  1995年   62篇
  1994年   52篇
  1993年   43篇
  1992年   44篇
  1991年   22篇
  1990年   22篇
  1989年   25篇
  1988年   17篇
  1987年   19篇
  1986年   17篇
  1985年   20篇
  1984年   16篇
  1983年   17篇
  1982年   26篇
  1981年   27篇
  1980年   12篇
  1979年   12篇
  1978年   7篇
  1977年   13篇
  1976年   7篇
  1974年   6篇
  1970年   7篇
排序方式: 共有7137条查询结果,搜索用时 656 毫秒
61.
The mechanism of known receptor-mediated androgen effects on the endometrial stroma was studied in endometrial fibroblasts derived from human uterus. 17-Estradiol (E) induced the expressions of androgen receptor (AR) mRNA, and predominantly increased the level of testosterone-binding sites (TBS) in uterine endometrial fibroblasts. The effect on the level of dihydrotestosterone-binding sites (DHTBS) was similar but smaller. This result suggests that the AR mRNA expressed might encode TBS, but probably not DHTBS. The TBS level increased by estrogen was down-regulated by testosterone (T) + E, but the AR mRNA expression increased by E was not down-regulated by E + T in the fibroblasts. Although the synthesis rate of AR was slightly increased (p<0.05) by E alone or E + T, the degradation rate of AR was significantly accelerated (p<0.05) by E + T in the fibroblasts. This result suggests that T might stimulate the metabolic rate of TBS, but does not inhibit the synthesis rate of AR mRNA to TBS in endometrial fibroblasts.  相似文献   
62.
63.
64.
Summary To confirm the possibility that protein kinase C is involved in compaction of mouse embryos, the presence and distribution pattern of Ca2+-dependent subspecies of this enzyme in mouse embryos, before and during compaction, were examined immunocytochemically with three different monoclonal antibodies. These were MC-1a, MC-2a and MC-3a, which selectively interact with the subspecies of the enzyme known as types I, II and III, respectively. Only when embryos were incubated with MC-3a, was immunofluorescence clearly detected in all cells of embryos before and during compaction. This result demonstrates the presence of type III protein kinase C in embryos before and during compaction and suggests the possibility that the type III enzyme may be involved in compaction. No marked differences were found in the distribution pattern of the type III enzyme between embryos examined before and during compaction.  相似文献   
65.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   
66.
An Arabidopsis thaliana mutant that produces green seeds thatare highly insensitive to exogenous ABA, non-dormant and severelydesiccation intolerant was isolated from a population of fastneutron-irradiated seeds. Molecular and genetic analysis ofthis mutant shows that these phenotypes are caused by an internaldeletion of approximately one third of the ABI3 gene. Thereforeabi3 mutants with the above phenotypes are representative ofnull alleles at this locus. (Received December 3, 1993; Accepted January 22, 1994)  相似文献   
67.
68.
A novel photorespiratory mutant of Arabidopsis thaliana, designatedgld2, was isolated based on a growth requirement for abnormallyhigh levels of atmospheric CO2. Photosynthetic CO2 fixationwas inhibited in the mutant following illumination in air butnot in atmosphere containing 2% O2. Photosynthetic assimilationof 14CO2 in an atmosphere containing 50% O2 resulted in accumulationof 48% of the soluble label in glycine in the mutant comparedto 9% in the wild type. The rate of glycine decarboxylationby isolated mitochondria from the mutant was reduced to 6% ofthe wild type rate. In genetic crosses, the mutant complementedtwo previously described photorespiratory mutants of A. thalianathat accumulate glycine during photosynthesis in air due todefects in glycine decarboxylase (glyD, now designated gld1)and serine transhydroxymethylase (stm). Because glycine decarboxylaseis a complex of four enzymes, these results are consistent witha mutation in a glycine decarboxylase subunit other than thataffected in the gld1 mutant. The two gld loci were mapped tochromosomes 2 and 5, respectively. 3Present address: Department of Crop and Soil Sciences, MichiganState University, East Lansing, MI 48824, U.S.A. 4Present address: Department of Applied Bioscience, Facultyof Agriculture, Hokkaido University, Kita-Ku, Sapporo, 060 Japan 5Present address: Department of Biology, Carnegie Institutionof Washington, 290 Panama Street, Standford, CA 94305, U.S.A.  相似文献   
69.
70.
Chloroplast DNA (cpDNA) restriction site variation was examined in five species ofDesmodium subgenusPodocarpium (Leguminosae; Papilionoideae; Desmodieae). Twenty four phylogenetically informative cpDNA mutations were scored. The cladistic analysis of characters based on the 24 mutations resulted in the most parsimonious tree which supports the monophyly of the subgenus.Desmodium elegans of subgenusDollinera was the sister group of subgenusPodocarpium in this tree. The groupings obtained from the cpDNA characters were consistent with the present infrageneric classification system for the subgenus except for the infraspecific taxa ofD. podocarpum. Three groups withinD. podocarpum, which were incongruent with the infraspecific classification of the species, were distinguished by a total of four site mutations. The first group consisted of subsp.podocarpum, subsp.fallax, and subsp.oxyphyllum var.oxyphyllum; the second subsp.oxyphyllum var.oxyphyllum; and the last subsp.oxyphyllum var.oxyphyllum and var.mandshuricum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号