首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6753篇
  免费   379篇
  国内免费   5篇
  2023年   12篇
  2022年   32篇
  2021年   102篇
  2020年   65篇
  2019年   69篇
  2018年   118篇
  2017年   90篇
  2016年   166篇
  2015年   226篇
  2014年   276篇
  2013年   488篇
  2012年   460篇
  2011年   441篇
  2010年   289篇
  2009年   300篇
  2008年   491篇
  2007年   454篇
  2006年   449篇
  2005年   464篇
  2004年   478篇
  2003年   428篇
  2002年   365篇
  2001年   53篇
  2000年   47篇
  1999年   58篇
  1998年   81篇
  1997年   69篇
  1996年   53篇
  1995年   62篇
  1994年   52篇
  1993年   43篇
  1992年   44篇
  1991年   22篇
  1990年   22篇
  1989年   25篇
  1988年   17篇
  1987年   19篇
  1986年   17篇
  1985年   20篇
  1984年   16篇
  1983年   17篇
  1982年   26篇
  1981年   27篇
  1980年   12篇
  1979年   12篇
  1978年   7篇
  1977年   13篇
  1976年   7篇
  1974年   6篇
  1970年   7篇
排序方式: 共有7137条查询结果,搜索用时 625 毫秒
121.
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.  相似文献   
122.
Sex allocation theory predicts that the optimal sexual resource allocation of simultaneous hermaphrodites is affected by mating group size (MGS). Although the original concept assumes that the MGS does not differ between male and female functions, the MGS in the male function (MGSm; i.e., the number of sperm recipients the focal individual can deliver its sperm to plus one) and that in the female function (MGSf; the number of sperm donors plus one) do not always coincide and may differently affect the optimal sex allocation. Moreover, reproductive costs can be split into “variable” (e.g., sperm and eggs) and “fixed” (e.g., genitalia) costs, but these have been seldom distinguished in empirical studies. We examined the effects of MGSm and MGSf on the fixed and variable reproductive investments in the sessilian barnacle Balanus rostratus. The results showed that MGSm had a positive effect on sex allocation, whereas MGSf had a nearly significant negative effect. Moreover, the “fixed” cost varied with body size and both aspects of MGS. We argue that the two aspects of MGS should be distinguished for organisms with unilateral mating.  相似文献   
123.
Norovirus infection cause epidemic nonbacterial gastroenteritis in patients. The immune mechanisms responsible for the clearance of virus are not completely understood. We examined whether NKT cells are effective against norovirus infection using CD1d KO mice. The body weights of 4-weeks-old CD1d KO mice that were infected with murine norovirus-S7 (MNV-S7) were significantly lower than those of non-infected CD1d KO mice. On the other hand, the body weights of infected WT mice were comparable to those of non-infected WT mice. Correspondingly, CD1d KO mice had an almost 1000-fold higher MNV-S7 burden in the intestine after infection in comparison to WT mice. The mechanism responsible for the insufficient MNV-S7 clearance in CD1d KO mice was attributed to reduced IFN-γ production early during MNV-S7 infection. In addition, the markedly impaired IL-4 production in CD1d KO mice resulted in an impaired MNV-S7-specific secretory IgA production after MNV-S7 infection which is associated with mucosal immunity. Thus, the present results provide evidence that NKT cells play an essential role in MNV-S7 clearance.  相似文献   
124.
Primates - In the original publication of the article, the coauthor “Takashi Hayakawa” was wrongly assigned as co-corresponding author.  相似文献   
125.
126.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2.  相似文献   
127.
128.
129.
130.
Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.

To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators—including inorganic ions, antibiotics, and antibiotic resistance genes—were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 μg/L.

Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and groundwater samples, four commonly occurring tetracycline (tet) resistance genes—tet(M), tet(O), tet(Q), and tet(W)—were detected. The detection frequency of tet genes was much higher in wells located closer to and down-gradient from the lagoons than in wells more distant from the lagoons. These results suggested that in the groundwater underlying both facilities tetracycline resistance genes exist and are somewhat persistent, but that the distribution and potentially the flux for each tet gene varied throughout the study period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号