首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6506篇
  免费   379篇
  国内免费   2篇
  6887篇
  2023年   16篇
  2022年   37篇
  2021年   103篇
  2020年   65篇
  2019年   68篇
  2018年   112篇
  2017年   83篇
  2016年   160篇
  2015年   214篇
  2014年   278篇
  2013年   456篇
  2012年   448篇
  2011年   436篇
  2010年   284篇
  2009年   290篇
  2008年   481篇
  2007年   437篇
  2006年   438篇
  2005年   441篇
  2004年   468篇
  2003年   412篇
  2002年   346篇
  2001年   61篇
  2000年   52篇
  1999年   60篇
  1998年   79篇
  1997年   65篇
  1996年   40篇
  1995年   56篇
  1994年   49篇
  1993年   37篇
  1992年   40篇
  1991年   17篇
  1990年   21篇
  1989年   22篇
  1988年   15篇
  1987年   19篇
  1986年   15篇
  1985年   16篇
  1984年   17篇
  1983年   14篇
  1982年   22篇
  1981年   22篇
  1980年   11篇
  1979年   12篇
  1978年   8篇
  1977年   12篇
  1976年   8篇
  1974年   7篇
  1969年   4篇
排序方式: 共有6887条查询结果,搜索用时 0 毫秒
41.
Currently, gapmer antisense oligonucleotide (ASO) therapeutics are under clinical development for the treatment of various diseases, including previously intractable human disorders; however, they have the potential to induce hepatotoxicity. Although several groups have reported the reduced hepatotoxicity of gapmer ASOs following chemical modifications of sugar residues or internucleotide linkages, only few studies have described nucleobase modifications to reduce hepatotoxicity. In this study, we introduced single or multiple combinations of 17 nucleobase derivatives, including four novel derivatives, into hepatotoxic locked nucleic acid gapmer ASOs and examined their effects on hepatotoxicity. The results demonstrated successful identification of chemical modifications that strongly reduced the hepatotoxicity of gapmer ASOs. This approach expands the ability to design gapmer ASOs with optimal therapeutic profiles.  相似文献   
42.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
43.
The complete nucleotide sequence of the genome of a symbiotic bacterium Bradyrhizobium japonicum USDA110 was determined. The genome of B. japonicum was a single circular chromosome 9,105,828 bp in length with an average GC content of 64.1%. No plasmid was detected. The chromosome comprises 8317 potential protein-coding genes, one set of rRNA genes and 50 tRNA genes. Fifty-two percent of the potential protein genes showed sequence similarity to genes of known function and 30% to hypothetical genes. The remaining 18% had no apparent similarity to reported genes. Thirty-four percent of the B. japonicum genes showed significant sequence similarity to those of both Mesorhizobium loti and Sinorhizobium meliloti, while 23% were unique to this species. A presumptive symbiosis island 681 kb in length, which includes a 410-kb symbiotic region previously reported by G?ttfert et al., was identified. Six hundred fifty-five putative protein-coding genes were assigned in this region, and the functions of 301 genes, including those related to symbiotic nitrogen fixation and DNA transmission, were deduced. A total of 167 genes for transposases/104 copies of insertion sequences were identified in the genome. It was remarkable that 100 out of 167 transposase genes are located in the presumptive symbiotic island. DNA segments of 4 to 97 kb inserted into tRNA genes were found at 14 locations in the genome, which generates partial duplication of the target tRNA genes. These observations suggest plasticity of the B. japonicum genome, which is probably due to complex genome rearrangements such as horizontal transfer and insertion of various DNA elements, and to homologous recombination.  相似文献   
44.
The effects of local population density, sex morph [protogynous (PG) or protandrous (PA)], and individual tree size on the demographic processes of seed production were investigated in a heterodichogamous maple, Acer mono Maxim. var. Marmoratum (Nichols.) Hara f. dissectum, in a temperate forest of Japan. As the distance from conspecific reproductive adults increased, the percentage of immature seed fall and empty seeds increased significantly, indicating higher pollination success along with local population density. Although the difference was not distinct, pollination success was affected by the local population density of the reciprocal sex morph rather than that of both sex morphs. The trees at higher local population density sites suffered higher seed mortality due to predation and decay, and tended to produce smaller seeds. Thus, the impacts of local population density operated both positively and negatively on reproduction. As a factor of individual traits, tree size scarcely affected any demographic processes. On the other hand, sex morph did affect pollination success. Trees of PG type had lower immature seed fall than those of PA type, suggesting that the former has higher efficiency of pollen acceptance than the latter. The results on seed demography presented here partly support previous suggestions that heterodichogamous plants exhibit reciprocal cross-pollination and gender specialization as reproductive traits.  相似文献   
45.
46.
It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo.  相似文献   
47.
The industrial yeast Candida utilis can grow on media containing xylose as sole carbon source, but cannot ferment it to ethanol. The deficiency might be due to the low activity of NADPH-preferring xylose reductase (XR) and NAD(+)-dependent xylitol dehydogenase (XDH), which convert xylose to xylulose, because C. utilis can ferment xylulose. We introduced multiple site-directed mutations in the coenzyme binding sites of XR and XDH derived from the xylose-fermenting yeast Candida shehatae to alter their coenzyme specificities. Several combinations of recombinant and native XRs and XDHs were tested. Highest productivity was observed in a strain expressing CsheXR K275R/N277D (NADH-preferring) and native CsheXDH (NAD(+)-dependent), which produced 17.4 g/L of ethanol from 50 g/L of xylose in 20 h. Analysis of the genes responsible for ethanol production from the xylose capacity of C. utilis indicated that the introduction of CsheXDH was essential, while overexpression of CsheXR K275R/N277D improved efficiency of ethanol production.  相似文献   
48.
A mouse nanos (nanos1) gene was cloned and its function was examined by generating a gene-knockout mouse. The nanos1 gene encodes an RNA-binding protein, which contains a putative zinc-finger motif that exhibits similarity with other nanos-class genes in vertebrates and invertebrates. Although nanos1 is not detected in primordial germ cells, it is observed in seminiferous tubules of mature testis. Interestingly, maternally expressed nanos1 is observed in substantial amounts in oocytes, but the amount of maternal RNA is rapidly reduced after fertilization, and the transient zygotic nanos1 expression is observed in eight-cell embryos. At 12.5 days postcoitum, nanos1 is re-expressed in the central nervous system and the expression continues in the adult brain, in which the hippocampal formation is the predominant region. The nanos1 -deficient mice develop to term without any detectable abnormality and they are fertile. No significant neural defect is observed in terms of their behavior to date.  相似文献   
49.
The operon encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the cyanobacterium Synechococcus sp. PCC7002 contains three rbc genes, rbcL, rbcX and rbcS, in this order. Introduction of translational frameshift into the rbcX gene resulted in a significant decrease in the production of large (RbcL) and small (RbcS) subunits of the Rubisco protein in Synechococcus sp. PCC7002 and in Escherichia coli. To investigate the function of the rbcX gene product (RbcX), we constructed the expression plasmid for the rbcX gene and examined the effects of RbcX on the recombinant Rubisco production in Escherichia coli. The coexpression experiments revealed that RbcX had marked effects on the production of large and small subunits of Rubisco without any significant influence on the mRNA level of rbc genes and/or the post-translational assembly of the Rubisco protein. The present rbcX coexpression system provides a novel and useful method for investigating the Rubisco maturation pathway.  相似文献   
50.
Remodeling of synaptic actin induced by photoconductive stimulation.   总被引:11,自引:0,他引:11  
M A Colicos  B E Collins  M J Sailor  Y Goda 《Cell》2001,107(5):605-616
Use-dependent synapse remodeling is thought to provide a cellular mechanism for encoding durable memories, yet whether activity triggers an actual structural change has remained controversial. We use photoconductive stimulation to demonstrate activity-dependent morphological synaptic plasticity by video imaging of GFP-actin at individual synapses. A single tetanus transiently moves presynaptic actin toward and postsynaptic actin away from the synaptic junction. Repetitive spaced tetani induce glutamate receptor-dependent stable restructuring of synapses. Presynaptic actin redistributes and forms new puncta that label for an active synapse marker FM5-95 within 2 hr. Postsynaptic actin sprouts projections toward the new presynaptic actin puncta, resembling the axon-dendrite interaction during synaptogenesis. Our results indicate that activity-dependent presynaptic structural plasticity facilitates the formation of new active presynaptic terminals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号