首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2208篇
  免费   107篇
  2023年   3篇
  2022年   17篇
  2021年   33篇
  2020年   24篇
  2019年   21篇
  2018年   35篇
  2017年   30篇
  2016年   41篇
  2015年   78篇
  2014年   99篇
  2013年   137篇
  2012年   145篇
  2011年   152篇
  2010年   95篇
  2009年   116篇
  2008年   163篇
  2007年   152篇
  2006年   162篇
  2005年   134篇
  2004年   139篇
  2003年   139篇
  2002年   136篇
  2001年   16篇
  2000年   19篇
  1999年   13篇
  1998年   13篇
  1997年   16篇
  1996年   17篇
  1995年   19篇
  1994年   15篇
  1993年   18篇
  1992年   7篇
  1991年   12篇
  1990年   7篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   10篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1970年   3篇
  1968年   2篇
排序方式: 共有2315条查询结果,搜索用时 518 毫秒
61.

Background

Earlier studies implicated norepinephrine transporter (NET) gene (SLC6A2) polymorphisms in the etiology of major depressive disorder (MDD). Recently, two single nucleotide SLC6A2 polymorphisms, G1287A in exon 9 and T-182C in the promoter region, were found to be associated with MDD in different populations. We investigated the relationship between the brain volume and these two polymorphisms of the SLC6A2 in MDD patients.

Methods

We obtained 3D high-resolution T1-weighted images of 30 first-episode MDD patients and 48 age- and sex-matched healthy subjects (HS). All were divided into 4 groups based on polymorphism of either the G1287A or the T-182C genotype. VBM analysis examined the effects of diagnosis, genotype, and genotype-diagnosis interactions.

Results

Diagnosis effects on the brain morphology were found in the left superior temporal cortex. No significant genotype effects were found in the T-182C and the G1287A. A significant genotype (G1287A)–diagnosis interaction was found in the left dorsolateral prefrontal cortex. No significant genotype (T-182C)–diagnosis interaction effects were observed in any brain region.

Conclusions

In MDD patients there seems to be a relationship between the volume of the dorsolateral prefrontal cortex and polymorphism of the SLC6A2 G1287A gene.  相似文献   
62.
63.
Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1‐cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL‐2) protein in placenta along with increased expression toward the end of pregnancy. PL‐2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1‐cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1‐cre;R26GRR mice revealed that tdsRed‐positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1‐cre;R26GRR testes suggested that Cre‐mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1cre mice line provides a unique resource to understand testicular germ‐cell development. genesis 54:389–397, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
64.
65.
Small-angle X-ray scattering experiments were carried out to investigate the structural changes of cardiac thin filaments induced by the cardiomyopathy-causing E244D mutation in troponin T (TnT). We examined native thin filaments (NTF) from a bovine heart, reconstituted thin filaments containing human cardiac wild-type Tn (WTF), and filaments containing the E244D mutant of Tn (DTF), in the absence and presence of Ca2+. Analysis by model calculation showed that upon Ca2+-activation, tropomyosin (Tm) and Tn in the WTF and NTF moved together in a direction to expose myosin-binding sites on actin. On the other hand, Tm and Tn of the DTF moved in the opposite directions to each other upon Ca2+-activation. These movements caused Tm to expose more myosin-binding sites on actin than the WTF, suggesting that the affinity of myosin for actin is higher for the DTF. Thus, the mutation-induced structural changes in thin filaments would increase the number of myosin molecules bound to actin compared with the WTF, resulting in the force enhancement observed for the E244D mutation.  相似文献   
66.
67.
68.
The appropriate regulation of retinoic acid signaling is indispensable for patterning of the vertebrate central nervous system along the anteroposterior (A-P) axis. Although both CYP26A1 and CYP26C1, retinoic acid-degrading enzymes that are expressed at the anterior end of the gastrulating mouse embryo, have been thought to play an important role in central nervous system patterning, the detailed mechanism of their contribution has remained largely unknown. We have now analyzed CYP26A1 and CYP26C1 function by generating knockout mice. Loss of CYP26C1 did not appear to affect embryonic development, suggesting that CYP26A1 and CYP26C1 are functionally redundant. In contrast, mice lacking both CYP26A1 and CYP26C1 were found to manifest a pronounced anterior truncation of the brain associated with A-P patterning defects that reflect expansion of posterior identity at the expense of anterior identity. Furthermore, Cyp26a1-/-Cyp26c1-/- mice fail to produce migratory cranial neural crest cells in the forebrain and midbrain. These observations, together with a reevaluation of Cyp26a1 mutant mice, suggest that the activity of CYP26A1 and CYP26C1 is required for correct A-P patterning and production of migratory cranial neural crest cells in the developing mammalian brain.  相似文献   
69.
Yeast cell morphology can be treated as a quantitative trait using the image processing software CalMorph. In the present study, we investigated Ca(2+)-induced morphological changes in Ca(2+)-sensitive (cls) mutants of Saccharomyces cerevisiae, based on the discovery that the characteristic Ca(2+)-induced morphological changes in the Ca(2+)-sensitive mutant zds1 reflect changes in the Ca(2+) signaling-mediated cell cycle control pathway. By applying hierarchical cluster analysis to the quantitative morphological data of 58 cls mutants, 31 of these mutants were classified into seven classes based on morphological similarities. The patterns of morphological change induced by Ca(2+) in one class differed from those of another class. Based on the results obtained using versatile methods for phenotypic analysis, we conclude that a high concentration of Ca(2+) exerts a wide variety of effects on yeast and that there are multiple Ca(2+)-regulatory pathways that are distinct from the Zds1p-related pathway.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号