首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5209篇
  免费   340篇
  5549篇
  2022年   32篇
  2021年   62篇
  2020年   38篇
  2019年   35篇
  2018年   59篇
  2017年   53篇
  2016年   81篇
  2015年   143篇
  2014年   173篇
  2013年   259篇
  2012年   260篇
  2011年   284篇
  2010年   190篇
  2009年   215篇
  2008年   303篇
  2007年   297篇
  2006年   316篇
  2005年   286篇
  2004年   296篇
  2003年   299篇
  2002年   293篇
  2001年   147篇
  2000年   160篇
  1999年   122篇
  1998年   47篇
  1997年   45篇
  1996年   51篇
  1995年   57篇
  1994年   58篇
  1993年   49篇
  1992年   72篇
  1991年   74篇
  1990年   52篇
  1989年   55篇
  1988年   58篇
  1987年   49篇
  1986年   59篇
  1985年   40篇
  1984年   25篇
  1983年   34篇
  1982年   36篇
  1981年   25篇
  1980年   22篇
  1979年   28篇
  1978年   22篇
  1977年   21篇
  1976年   16篇
  1975年   23篇
  1971年   12篇
  1969年   21篇
排序方式: 共有5549条查询结果,搜索用时 0 毫秒
971.
Dystroglycan is a central component of the dystrophin-glycoprotein complex that links the extracellular matrix with cytoskeleton. Recently, mutations of the genes encoding putative glycosyltransferases were identified in several forms of congenital muscular dystrophies accompanied by brain anomalies and eye abnormalities, and aberrant glycosylation of alpha-dystroglycan has been implicated in their pathogeneses. These diseases are now collectively called alpha-dystroglycanopathy. In this study, we demonstrate that peripheral nerve myelination is defective in the fukutin-deficient chimeric mice, a mouse model of Fukuyama-type congenital muscular dystrophy, which is the most common alpha-dystroglycanopathy in Japan. In the peripheral nerve of these mice, the density of myelinated nerve fibers was significantly decreased and clusters of abnormally large non-myelinated axons were ensheathed by a single Schwann cell, indicating a defect of the radial sorting mechanism. The sugar chain moiety and laminin-binding activity of alpha-dystroglycan were severely reduced, while the expression of beta1-integrin was not altered in the peripheral nerve of the chimeric mice. We also show that the clustering of acetylcholine receptor is defective and neuromuscular junctions are fragmented in appearance in these mice. Expression of agrin and laminin as well as the binding activity of alpha-dystroglycan to these ligands was severely reduced at the neuromuscular junction. These results demonstrate that fukutin plays crucial roles in the myelination of peripheral nerve and formation of neuromuscular junction. They also suggest that defective glycosylation of alpha-dystroglycan may play a role in the impairment of these processes in the deficiency of fukutin.  相似文献   
972.
13C and (31)P NMR spectra of a transmembrane peptide, [1-(13)C]Ala(14)-labeled A(6-34), of bacteriorhodopsin incorporated into dimyristoylphosphatidylcholine (DMPC) bilayer were recorded to clarify its dynamics and orientation in the lipid bilayer. This peptide is shown to take an alpha-helical form both in liquid crystalline and gel phases, as viewed from the conformation dependent (13)C chemical shifts. In addition, this peptide undergoes rapid rigid-body rotation about the helical axis at ambient temperature as viewed from the axially symmetric (13)C chemical shift anisotropy, whereas this symmetric anisotropy is changed to an asymmetric pattern at temperatures below 10 degrees C. We further incorporated the peptide into the spontaneously aligned DMPC bilayer to applied magnetic field, induced by dynorphin (dynorphin:DMPC =1:10), a heptadeca-opioid peptide with very high affinity to opioid receptor, in order to gain insight into its orientation in the bilayer. This magnetically aligned system turned out to be persistent even at 0 degrees C as viewed from (31)P NMR spectra of the lipid bilayer, after this peptide was incorporated into this system [A(6-34): dynorphin: DMPC = 4:10:100]. It was found from the (13)C NMR spectra of [1-(13)C]Ala(14) A(6-34) that the helical axis of A(6-34) is oriented parallel to the bilayer normal irrespective of the presence or absence of reorientation motion about the helical axis at a temperature above the lowered gel to liquid crystalline phase transition.  相似文献   
973.
Previous reports have shown that the N terminus of Cdt1 is required for its degradation during S phase (Li, X., Zhao, Q., Liao, R., Sun, P., and Wu, X. (2003) J. Biol. Chem. 278, 30854-30858; Nishitani, H., Lygerou, Z., and Nishimoto, T. (2004) J. Biol. Chem. 279, 30807-30816). The stabilization was attributed to deletion of the cyclin binding motif (Cy motif), which is required for its phosphorylation by cyclin-dependent kinases. Phosphorylated Cdt1 is subsequently recognized by the F-box protein Skp2 and targeted for proteasomal mediated degradation. Using phosphopeptide mapping and mutagenesis studies, we found that threonine 29 within the N terminus of Cdt1 is phosphorylated by Cdk2 and required for interaction with Skp2. However, threonine 29 and the Cy motif are not necessary for proteolysis of Cdt1 during S phase. Mutants of Cdt1 that do not stably associate with Skp2 or cyclins are still degraded in S phase to the same extent as wild type Cdt1, indicating that other determinants within the N terminus of Cdt1 are required for degrading Cdt1. We localized the region necessary for Cdt1 degradation to the first 32 residues. Overexpression of stable forms of Cdt1 significantly delayed entry into and completion of S phase, suggesting that failure to degrade Cdt1 prevents normal progression through S phase. In contrast, Cdt1 mutants that fail to interact with Skp2 and cyclins progress through S phase with similar kinetics as wild type Cdt1 but stimulate the re-replication caused by overexpressing Cdt1. Therefore, a Skp2-independent pathway that requires the N-terminal 32 residues of Cdt1 is critical for the degradation of Cdt1 in S phase, and this degradation is necessary for the optimum progression of cells through S phase.  相似文献   
974.
Age-related changes in systolic blood pressure were assessed, using the senescence-accelerated mouse (SAM) model for aging research with strains SAMR1, SAMP1, and SAMP8. Each of the strains manifested a characteristic change in blood pressure with age. The SAMR1 strain, with normal aging, did not have chronologic changes from 2 to 27 months of age. The SAMP1 strain, with accelerated senescence, had a significant increase in blood pressure with age, and some (8 of 39) mice manifested hypertensive vascular disease characterized by high blood pressure, cardiac hypertrophy, and arteriolar fibrinoid necrosis at 11 to 14 months of age. The gradual increase in blood pressure after 8 to 10 months was considered to be preceded by progressive renal changes, from glomerulonephritis to contraction of the kidney, suggesting that the high blood pressure in the SAMP1 strain was of renal origin. Blood pressure in the SAMP8 strain, with age-related deficits in learning and memory, gradually decreased after 5 to 7 months of age, and was suggested to be due to the astrogliotic changes in response to spongiform degeneration in the medulla oblongata at 11 to 14 and 15 to 18 months of age.  相似文献   
975.
Accumulating evidence indicates that recognition by TCRs is far more degenerate than formerly presumed. Cross-recognition of microbial Ags by autoreactive T cells is implicated in the development of autoimmunity, and elucidating the recognition nature of TCRs has great significance for revelation of the disease process. A major drawback of currently used means, including positional scanning synthetic combinatorial peptide libraries, to analyze diversity of epitopes recognized by certain TCRs is that the systematic detection of cross-recognized epitopes considering the combinatorial effect of amino acids within the epitope is difficult. We devised a novel method to resolve this issue and used it to analyze cross-recognition profiles of two glutamic acid decarboxylase 65-autoreactive CD4(+) T cell clones, established from type I diabetes patients. We generated a DNA-based randomized epitope library based on the original glutamic acid decarboxylase epitope using class II-associated invariant chain peptide-substituted invariant chains. The epitope library was composed of seven sublibraries, in which three successive residues within the epitope were randomized simultaneously. Analysis of agonistic epitopes indicates that recognition by both TCRs was significantly affected by combinations of amino acids in the antigenic peptide, although the degree of combinatorial effect differed between the two TCRs. Protein database searching based on the TCR recognition profile proved successful in identifying several microbial and self-protein-derived mimicry epitopes. Some of the identified mimicry epitopes were actually produced from recombinant microbial proteins by APCs to stimulate T cell clones. Our data demonstrate the importance of the combinatorial nature of amino acid residues of epitopes in molecular mimicry.  相似文献   
976.
977.
978.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were −470 mV for the 13-cis configuration of the retinal Shiff base in bR and −757 mV for the all-trans configuration in H2O, and −433 mV for the 13-cis configuration and −742 mV for the all-trans configuration in D2O. The solvent isotope effect (ΔV=V(D2O)−V(H2O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated CN part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were −507 mV for the 13-cis configuration and −788 mV for the all-trans configuration; and for the E204Q mutant they were −491 mV for the 13-cis configuration and −769 mV for the all-trans configuration. Replacement of the Glu194 or Glu204 residues by Gln weakened the electron withdrawing interaction to the protonated CN bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were −471 mV for the 13-cis configuration and −760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the CN part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   
979.
Monocytes/macrophages exposed to LPS show reduced responses to second stimulation with LPS, which is termed LPS tolerance. In this study, we investigated molecular mechanism of LPS tolerance in macrophages. Mouse peritoneal macrophages pre-exposed to LPS exhibited reduced production of inflammatory cytokines in a time- and dose-dependent manner. Activation of neither IL-1 receptor-associated kinase nor NF-kappaB was observed in macrophages that became tolerant by LPS pretreatment, indicating that the proximal event in Toll-like receptor 4 (TLR4)-MyD88-dependent signaling is affected in tolerant macrophages. Although TLR4 mRNA expression significantly decreased within a few hours of LPS pretreatment and returned to the original level at 24 h, the surface TLR4 expression began to decrease within 1 h, with a gradual decrease after that, and remained suppressed over 24 h. A decrease in inflammatory cytokine production in tolerant macrophages well correlates with down-regulation of the surface TLR4 expression, which may explain one of the mechanisms for LPS tolerance.  相似文献   
980.
To make a single molecular photo-device, it is essential to control the exact orientation of two types of proteins. We made a chimeric protein in which cytochrome b562 was linked to the N-terminus of enhanced green fluorescent protein, cytb562-EGFP. Within cytb562-EGFP, the excitation energy of EGFP was transferred to the cytochrome b562 cofactor fixed proximally to EGFP. Cytb562-EGFP was engineered so that iron protoporphyrin IX was substituted by zinc protoporphyrin IX to make it a suitable cofactor for photo-induced electron transfer. The photosensitizer pigment was optimized and the EGFP was replaced by a blue fluorescent mutant that gave 15% higher energy transfer efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号