全文获取类型
收费全文 | 5208篇 |
免费 | 341篇 |
专业分类
5549篇 |
出版年
2022年 | 32篇 |
2021年 | 62篇 |
2020年 | 38篇 |
2019年 | 35篇 |
2018年 | 59篇 |
2017年 | 53篇 |
2016年 | 81篇 |
2015年 | 143篇 |
2014年 | 173篇 |
2013年 | 259篇 |
2012年 | 260篇 |
2011年 | 284篇 |
2010年 | 190篇 |
2009年 | 215篇 |
2008年 | 303篇 |
2007年 | 297篇 |
2006年 | 316篇 |
2005年 | 286篇 |
2004年 | 296篇 |
2003年 | 299篇 |
2002年 | 293篇 |
2001年 | 147篇 |
2000年 | 160篇 |
1999年 | 122篇 |
1998年 | 47篇 |
1997年 | 45篇 |
1996年 | 51篇 |
1995年 | 57篇 |
1994年 | 58篇 |
1993年 | 49篇 |
1992年 | 72篇 |
1991年 | 74篇 |
1990年 | 52篇 |
1989年 | 55篇 |
1988年 | 58篇 |
1987年 | 49篇 |
1986年 | 59篇 |
1985年 | 40篇 |
1984年 | 25篇 |
1983年 | 34篇 |
1982年 | 36篇 |
1981年 | 25篇 |
1980年 | 22篇 |
1979年 | 28篇 |
1978年 | 22篇 |
1977年 | 21篇 |
1976年 | 16篇 |
1975年 | 23篇 |
1971年 | 12篇 |
1969年 | 21篇 |
排序方式: 共有5549条查询结果,搜索用时 15 毫秒
41.
Sesquiterpenoids from Ferula kuhistanica 总被引:1,自引:0,他引:1
Chen B Teranishi R Kawazoe K Takaishi Y Honda G Itoh M Takeda Y Kodzhimatov OK 《Phytochemistry》2000,54(7):717-722
Methanol extracts of the air-dried roots and stems of Ferula kuhistanica afforded seven daucane-type sesquiterpenes, called kuhistanicaol A-G, together with 13 known daucane esters. Their structures were established on the basis of spectroscopic evidence and the results of chemical reactions. 相似文献
42.
43.
Sekiya-Kawasaki M Abe M Saka A Watanabe D Kono K Minemura-Asakawa M Ishihara S Watanabe T Ohya Y 《Genetics》2002,162(2):663-676
In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p. 相似文献
44.
Sakazume S Ohashi H Sasaki Y Harada N Nakanishi K Sato H Emi M Endoh K Sohma R Kido Y Nagai T Kubota T 《Human genetics》2012,131(1):121-130
X-chromosome inactivation (XCI) is an essential mechanism in females that compensates for the genome imbalance between females and males. It is known that XCI can spread into an autosome of patients with X;autosome translocations. The subject was a 5-year-old boy with Prader?CWilli syndrome (PWS)-like features including hypotonia, hypo-genitalism, hypo-pigmentation, and developmental delay. G-banding, fluorescent in situ hybridization, BrdU-incorporated replication, human androgen receptor gene locus assay, SNP microarrays, ChIP-on-chip assay, bisulfite sequencing, and real-time RT-PCR were performed. Cytogenetic analyses revealed that the karyotype was 46,XY,der(X)t(X;15)(p21.1;q11.2),?15. In the derivative chromosome, the X and half of the chromosome 15 segments showed late replication. The X segment was maternal, and the chromosome 15 region was paternal, indicating its post-zygotic origin. The two chromosome 15s had a biparental origin. The DNA methylation level was relatively high in the region proximal from the breakpoint, and the level decreased toward the middle of the chromosome 15 region; however, scattered areas of hypermethylation were found in the distal region. The promoter regions of the imprinted SNRPN and the non-imprinted OCA2 genes were completely and half methylated, respectively. However, no methylation was found in the adjacent imprinted gene UBE3A, which contained a lower density of LINE1 repeats. Our findings suggest that XCI spread into the paternal chromosome 15 led to the aberrant hypermethylation of SNRPN and OCA2 and their decreased expression, which contributes to the PWS-like features and hypo-pigmentation of the patient. To our knowledge, this is the first chromosome-wide methylation study in which the DNA methylation level is demonstrated in an autosome subject to XCI. 相似文献
45.
M Yoshiyama H Sakai M Teragaki K Takeuchi T Takeda M Ikata M Ishikawa I Miura 《Biochemical and biophysical research communications》1988,151(3):1408-1415
Perfused guinea-pig hearts, which were analyzed by 31P-MRS, were subjected to 30 and 60 minute ischemia and reperfused using two perfusates, one containing 200 microM inosine, and the other without inosine. After 4 hour reperfusion with inosine, ATP levels increased to 95.5% of preischemic value (30 minute ischemia) and 76.2% (60 minute ischemia). However, after 4 hour reperfusion without inosine, ATP levels increased only to 72.2% (30 minute ischemia) and to 48.2% (60 minute ischemia). In 60 minute ischemic hearts reperfused with inosine, left ventricular maximal positive dp/dt (LV dp/dt) was improved significantly to 82.4% after 6 hour reperfusion in contrast to hearts reperfused without inosine (43.1%). Administration of inosine was very useful for increasing myocardial gross energy product and improving cardiac performance. 相似文献
46.
Takeda M Chang CK Ikeya T Güntert P Chang YH Hsu YL Huang TH Kainosho M 《Journal of molecular biology》2008,380(4):608-622
The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform 13C and 15N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the β-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution. 相似文献
47.
Purification and properties of a lytic enzyme from the cell wall of Chlorella ellipsoidea C-87 总被引:1,自引:0,他引:1
Cell wall lytic activity was detected in the culture medium and cell wall of 1AM Chlorella ellipsoidea C-87. The enzymes of both fractions had their highest activity at pH 5. The lytic activity bound to the cell wall consisted of a polysaccharide releasing enzyme, an exo-type enzyme releasing disaccharide, and glucosidase; but only the polysaccharide releasing enzyme was solubilized by lithium chloride. A polysaccharide releasing enzyme with a molecular weight around 40 kDa was isolated from the culture medium. Hemicellulose is degraded by the polysaccharide releasing enzyme, and the rigid wall by the exo-type enzyme. 相似文献
48.
Funamoto S Anjard C Nellen W Ochiai H 《Differentiation; research in biological diversity》2003,71(1):51-61
In eukaryotic cells, the universal second messenger cAMP regulates various aspects of development and differentiation. The primary target for cAMP is the regulatory subunit of cAMP-dependent protein kinase A (PKA), which, upon cAMP binding, dissociates from the catalytic subunit and thus activates it. In the soil amoeba Dictyostelium discoideum, the function of PKA in growth, development and cell differentiation has been thoroughly investigated and substantial information is available. To obtain a more general view, we investigated the influence of PKA on development of the related species Polysphondylium pallidum. Cells were transformed to overexpress either a dominant negative mutant of the regulatory subunit (Rm) from Dictyostelium that cannot bind cAMP, or the catalytic subunit (PKA-C) from Dictyostelium. Cells overexpressing Rm rarely aggregated and the few multicellular structures developed slowly into very small fruiting bodies without branching of secondary sorogens, the prominent feature of Polysphondylium. Few round spores with reduced viability were formed. When mixed with wild-type cells and allowed to develop, the Rm cells were randomly distributed in aggregation streams, but were later found in the posterior region of the culminating slug or were left behind on the surface of the substratum. The PKA-C overexpressing cells exhibited precocious development and formed more aggregates of smaller size. Moreover, expression of PKA-C under the control of the prestalk-specific ecmB promoter of Dictyostelium leads to protrusions from aggregation streams. We conclude that Dictyostelium PKA subunits introduced into Polysphondylium cells are functional as signal components, indicating that a biochemically similar PKA mechanism works in Polysphondylium. 相似文献
49.
Kenichiro Kinouchi Atsuhiro Ichihara Motoaki Sano Ge-Hong Sun-Wada Yoh Wada Hiroki Ochi Toru Fukuda Kanako Bokuda Hideaki Kurosawa Naohiro Yoshida Shu Takeda Keiichi Fukuda Hiroshi Itoh 《PloS one》2013,8(11)
The ATPase 6 accessory protein 2 (ATP6AP2)/(pro)renin receptor (PRR) is essential for the biogenesis of active vacuolar H+-ATPase (V-ATPase). Genetic deletion of ATP6AP2/PRR causes V-ATPase dysfunction and compromises vesicular acidification. Here, we characterized the domains of ATP6AP2/PRR involved in active V-ATPase biogenesis. Three forms of ATP6AP2/PRR were found intracellularly: full-length protein and the N- and C-terminal fragments of furin cleavage products, with the N-terminal fragment secreted extracellularly. Genetic deletion of ATP6AP2/PRR did not affect the protein stability of V-ATPase subunits. The extracellular domain (ECD) and transmembrane domain (TM) of ATP6AP2/PRR were indispensable for the biogenesis of active V-ATPase. A deletion mutant of ATP6AP2/PRR, which lacks exon 4-encoded amino acids inside the ECD (Δ4M) and causes X-linked mental retardation Hedera type (MRXSH) and X-linked parkinsonism with spasticity (XPDS) in humans, was defective as a V-ATPase-associated protein. Prorenin had no effect on the biogenesis of active V-ATPase. The cleavage of ATP6AP2/PRR by furin seemed also dispensable for the biogenesis of active V-ATPase. We conclude that the N-terminal ECD of ATP6AP2/PRR, which is also involved in binding to prorenin or renin, is required for the biogenesis of active V-ATPase. The V-ATPase assembly occurs prior to its delivery to the trans-Golgi network and hence shedding of ATP6AP2/PRR would not affect the biogenesis of active V-ATPase. 相似文献
50.