首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2808篇
  免费   150篇
  2022年   25篇
  2021年   34篇
  2020年   26篇
  2019年   26篇
  2018年   41篇
  2017年   39篇
  2016年   51篇
  2015年   98篇
  2014年   117篇
  2013年   158篇
  2012年   178篇
  2011年   187篇
  2010年   119篇
  2009年   128篇
  2008年   189篇
  2007年   185篇
  2006年   195篇
  2005年   156篇
  2004年   174篇
  2003年   167篇
  2002年   164篇
  2001年   30篇
  2000年   38篇
  1999年   26篇
  1998年   22篇
  1997年   20篇
  1996年   20篇
  1995年   23篇
  1994年   19篇
  1993年   19篇
  1992年   32篇
  1991年   28篇
  1990年   17篇
  1989年   16篇
  1988年   16篇
  1987年   14篇
  1986年   17篇
  1985年   9篇
  1984年   8篇
  1983年   12篇
  1982年   14篇
  1981年   14篇
  1979年   9篇
  1978年   7篇
  1977年   9篇
  1976年   8篇
  1975年   8篇
  1974年   7篇
  1970年   8篇
  1968年   5篇
排序方式: 共有2958条查询结果,搜索用时 15 毫秒
91.
The bacterial growth is inhibited by nitrofurane compounds, although the yeast growth is hardly affected. In relation to the selective toxicity of nitrofuranes for bacteria, the interaction between microbes (Escherichia coli, Staphylococcus aureus and bakers– yeast) and nitrofurane compounds (5-nitro-2-furfural semicarbazone and 5-nitro-2-furylacryl amide) was examined.

Apparently, in the bacterial suspension containing energy substrate, nitrofuranes are continuously reduced to corresponding aminofuranes, respectively. The velocity of the bacterial reduction at the growth inhibiting condition was evaluated as great as above 30 per cent of the limit of supplying velocity of coenzymes in the cell, the reduction velocity of such value is enough to inhibit the bacterial growth, because the electron transfer in the cell metabolism is disordered.

On the other hand, in the yeast suspension, the reduction velocity was negligibly small. The difference of the reduction ability between bacteria and yeast was seemingly owing to the fact that the permeability of the nitrofuranes differs by the kind of microbe so that it was concluded that the antimicrobial effect of nitrofuranes is limited by the permeability for the microbe cell.  相似文献   
92.
A strain of Alcaligenes isolated from soil was a good producer of β-glucuronidase, and the enzyme was purified from the cell-free extract by sequential column chromatography on DEAE-Toyopearl, Toyopearl HW-55F, and Phenyl-Sepharose CL-4B. By these procedures, two β-glucuronidases designated as β-glucuronidases I and II were purified 240- and 508-fold, respectively. β-Glucuronidase I, with a molecular weight of 75,000, had an optimum pH at 7.5 and the enzyme II, with a molecular weight of 300,000, had maximum activity at pH 6.0. Both enzymes were strongly inhibited by saccharo-1,4-lactone, glucaro-δ-lactam, p-chloromercuribenzoate, Hg2+, and N-bromosuccinimide. β-Glucuronidase I was active toward estrogen-3-β-glucuronides and inert toward β-glucuronide conjugates of menthol, estrogen-17β-, estrogen-16α-, androsterone-3α-, testosterone-17β-, cortisol-17α-. β-Glucuronidase II hydrolyzed all of these substrates. β-Glucuronidase I was inhibited by phenolphthalein and its glucuronide.  相似文献   
93.
We studied the inhibitory effects of isorhamnetin on mushroom tyrosinase by inhibition kinetics and computational simulation. Isorhamnetin reversibly inhibited tyrosinase in a mixed-type manner at K i=0.235 ± 0.013 mM. Measurements of intrinsic and 1-anilinonaphthalene-8-sulfonate(ANS)-binding fluorescence showed that isorhamnetin did not induce significant changes in the tertiary structure of tyrosinase. To gain insight into the inactivation process, the kinetics were computed via time-interval measurements and continuous substrate reactions. The results indicated that inactivation induced by isorhamnetin was a first-order reaction with biphasic processes. To gain further insight, we simulated docking between tyrosinase and isorhamnetin. Simulation was successful (binding energies for Dock6.3: ?32.58 kcal/mol, for AutoDock4.2: ?5.66 kcal/mol, and for Fred2.2: ?48.86 kcal/mol), suggesting that isorhamnetin interacts with several residues, such as HIS244 and MET280. This strategy of predicting tyrosinase interaction in combination with kinetics based on a flavanone compound might prove useful in screening for potential natural tyrosinase inhibitors.  相似文献   
94.
95.
Like other CNS neurons, mature retinal ganglion cells (RGCs) are unable to regenerate their axons after nerve injury due to a diminished intrinsic regenerative capacity. One of the reasons why they lose the capacity for axon regeneration seems to be associated with a dramatic shift in RGCs’ program of gene expression by epigenetic modulation. We recently reported that (1R)-isoPropyloxygenipin (IPRG001), a genipin derivative, has both neuroprotective and neurite outgrowth activities in murine RGC-5 retinal precursor cells. These effects were both mediated by nitric oxide (NO)/S-nitrosylation signaling. Neuritogenic activity was mediated by S-nitrosylation of histone deacetylase-2 (HDAC2), which subsequently induced retinoic acid receptor β (RARβ) expression via chromatin remodeling in vitro. RARβ plays important roles of neural growth and differentiation in development. However, the role of RARβ expression during adult rat optic nerve regeneration is not clear. In the present study, we extended this hypothesis to examine optic nerve regeneration by IPRG001 in adult rat RGCs in vivo. We found a correlation between RARβ expression and neurite outgrowth with age in the developing rat retina. Moreover, we found that IPRG001 significantly induced RARβ expression in adult rat RGCs through the S-nitrosylation of HDAC2 processing mechanism. Concomitant with RARβ expression, adult rat RGCs displayed a regenerative capacity for optic axons in vivo by IPRG001 treatment. These neuritogenic effects of IPRG001 were specifically suppressed by siRNA for RARβ. Thus, the dual neuroprotective and neuritogenic actions of genipin via S-nitrosylation might offer a powerful therapeutic tool for the treatment of RGC degenerative disorders.  相似文献   
96.

Background

Earlier studies implicated norepinephrine transporter (NET) gene (SLC6A2) polymorphisms in the etiology of major depressive disorder (MDD). Recently, two single nucleotide SLC6A2 polymorphisms, G1287A in exon 9 and T-182C in the promoter region, were found to be associated with MDD in different populations. We investigated the relationship between the brain volume and these two polymorphisms of the SLC6A2 in MDD patients.

Methods

We obtained 3D high-resolution T1-weighted images of 30 first-episode MDD patients and 48 age- and sex-matched healthy subjects (HS). All were divided into 4 groups based on polymorphism of either the G1287A or the T-182C genotype. VBM analysis examined the effects of diagnosis, genotype, and genotype-diagnosis interactions.

Results

Diagnosis effects on the brain morphology were found in the left superior temporal cortex. No significant genotype effects were found in the T-182C and the G1287A. A significant genotype (G1287A)–diagnosis interaction was found in the left dorsolateral prefrontal cortex. No significant genotype (T-182C)–diagnosis interaction effects were observed in any brain region.

Conclusions

In MDD patients there seems to be a relationship between the volume of the dorsolateral prefrontal cortex and polymorphism of the SLC6A2 G1287A gene.  相似文献   
97.
98.
Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1‐cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL‐2) protein in placenta along with increased expression toward the end of pregnancy. PL‐2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1‐cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1‐cre;R26GRR mice revealed that tdsRed‐positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1‐cre;R26GRR testes suggested that Cre‐mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1cre mice line provides a unique resource to understand testicular germ‐cell development. genesis 54:389–397, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
99.
100.
Small-angle X-ray scattering experiments were carried out to investigate the structural changes of cardiac thin filaments induced by the cardiomyopathy-causing E244D mutation in troponin T (TnT). We examined native thin filaments (NTF) from a bovine heart, reconstituted thin filaments containing human cardiac wild-type Tn (WTF), and filaments containing the E244D mutant of Tn (DTF), in the absence and presence of Ca2+. Analysis by model calculation showed that upon Ca2+-activation, tropomyosin (Tm) and Tn in the WTF and NTF moved together in a direction to expose myosin-binding sites on actin. On the other hand, Tm and Tn of the DTF moved in the opposite directions to each other upon Ca2+-activation. These movements caused Tm to expose more myosin-binding sites on actin than the WTF, suggesting that the affinity of myosin for actin is higher for the DTF. Thus, the mutation-induced structural changes in thin filaments would increase the number of myosin molecules bound to actin compared with the WTF, resulting in the force enhancement observed for the E244D mutation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号