首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1010篇
  免费   51篇
  1061篇
  2022年   6篇
  2021年   11篇
  2020年   4篇
  2019年   12篇
  2018年   14篇
  2017年   20篇
  2016年   24篇
  2015年   31篇
  2014年   45篇
  2013年   61篇
  2012年   65篇
  2011年   55篇
  2010年   25篇
  2009年   37篇
  2008年   64篇
  2007年   54篇
  2006年   48篇
  2005年   51篇
  2004年   55篇
  2003年   57篇
  2002年   48篇
  2001年   21篇
  2000年   20篇
  1999年   14篇
  1998年   10篇
  1997年   10篇
  1996年   4篇
  1995年   9篇
  1994年   5篇
  1993年   6篇
  1992年   17篇
  1991年   14篇
  1990年   12篇
  1989年   11篇
  1988年   13篇
  1987年   12篇
  1986年   13篇
  1985年   10篇
  1984年   7篇
  1983年   8篇
  1982年   7篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1974年   8篇
  1971年   3篇
  1969年   6篇
  1968年   3篇
  1967年   3篇
排序方式: 共有1061条查询结果,搜索用时 15 毫秒
61.
Transforming growth factor-beta (TGFβ) homologues form a diverse superfamily that arose early in animal evolution and control cellular function through membrane-spanning, conserved serine-threonine kinases (RII and RI receptors). Activin and inhibin are related dimers within the TGFβ superfamily that share a common β-subunit. The evolution of the inhibin α-subunit created the only antagonist within the TGFβ superfamily and the only member known to act as an endocrine hormone. This hormone introduced a new level of complexity and control to vertebrate reproductive function. The novel functions of the inhibin α-subunit appear to reflect specific insertion-deletion changes within the inhibin β-subunit that occurred during evolution. Using phylogenomic analysis, we correlated specific insertions with the acquisition of distinct functions that underlie the phenotypic complexity of vertebrate reproductive processes. This phylogenomic approach presents a new way of understanding the structure-function relationships between inhibin, activin, and the larger TGFβ superfamily.  相似文献   
62.
63.
Abstract

Exposure to asbestos fiber is central to mesothelial carcinogenesis, for which iron overload in or near mesothelial cells is a key pathogenic mechanism. Alternatively, iron chelation therapy with deferasirox or regular phlebotomy was significantly preventive against crocidolite-induced mesothelial carcinogenesis in rats. However, the role of iron transporters during asbestos-induced carcinogenesis remains elusive. Here, we studied the role of divalent metal transporter 1 (DMT1; Slc11a2), which is a Fe(II) transporter, that is present not only on the apical plasma membrane of duodenal cells but also on the lysosomal membrane of every cell, in crocidolite-induced mesothelial carcinogenesis using DMT1 transgenic (DMT1Tg) mice. DMT1Tg mice show mucosal block of iron absorption without cancer susceptibility under normal diet. We unexpectedly found that superoxide production was significantly decreased upon stimulation with crocidolite both in neutrophils and macrophages of DMT1Tg mice, and the macrophage surface revealed higher iron content 1?h after contact with crocidolite. Intraperitoneal injection of 3?mg crocidolite ultimately induced malignant mesothelioma in ~50% of both wild-type and DMT1Tg mice (23/47 and 14/28, respectively); this effect was marginally (p?=?0.069) delayed in DMT1Tg mice, promoting survival. The promotional effect of nitrilotriacetic acid was limited, and the liver showed significantly higher iron content both in DMT1Tg mice and after crocidolite exposure. The results indicate that global DMT1 overexpression causes decreased superoxide generation upon stimulation in inflammatory cells, which presumably delayed the promotional stage of crocidolite-induced mesothelial carcinogenesis. DMT1Tg mice with low-stamina inflammatory cells may be helpful to evaluate the involvement of inflammation in various pathologies.  相似文献   
64.
Alkaline nitrobenzene oxidation, ozonation and methoxyl content determinations were applied to decomposing leaf litter of Ginkgo biloba L., Cinnamomum camphora sieb., Zelkova serrata Makino and Firmiana simplex W. F. Wight, respectively, during mulching to investigate the properties and estimate changes in lignin composition and content. Since the Klason lignin residue originated from components highly resistant to degradation by acid, the methoxyl content of Klason residue was used to estimate the lignin content of leaf litter. Quantitative analysis of presumed lignin-derived fragments, by use of alkaline nitrobenzene oxidation and ozonation methods, suggested that the estimated lignin content approximates that of the real lignin content of leaves, which is greatly overestimated by the Klason procedure. The estimated lignin contents ranged from 3.9 to 10.0% while the Klason lignan residue varied from 37.1 to 46.7% in un-mulched leaf litter. The absolute amounts of the measured lignin somewhat decreased during mulching, while the structure of lignin remaining in leaf litters after mulching was considered not to be very different from its original structure.  相似文献   
65.
Minoda A  Sonoike K  Okada K  Sato N  Tsuzuki M 《FEBS letters》2003,553(1-2):109-112
Photosystem (PS) II activity of a sulfoquinovosyl diacylglycerol (SQDG)-deficient mutant (hf-2) of Chlamydomonas was partially decreased compared with that of wild-type. The susceptibility to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modified in the mutant. Photometric measurements in the isolated thylakoid membranes of hf-2 revealed that the lowered activity in the mutant was derived from a decrease in the efficiency of the electron donation from water to tyrosine Z, not from the efficiency of the electron transport from Q(A) to Q(B). This result was confirmed by the decay kinetics of chlorophyll fluorescence determined in vivo. We conclude that SQDG contributes to maintaining the conformation of PSII complexes, particularly that of D1 polypeptides, which are necessary for maximum activities in Chlamydomonas.  相似文献   
66.
67.
Radiation therapy (RT) is pivotal in the treatment of many central nervous system (CNS) pathologies; however, exposure to RT in children is associated with a higher risk of secondary CNS tumors. Although recent research interest has focused on the reparative and therapeutic role of microglia, their recruitment following RT has not been elucidated, especially in the developing CNS. Here, we investigated the spatiotemporal dynamics of microglia during tissue repair in the irradiated embryonic medaka brain by whole-mount in situ hybridization using a probe for Apolipoprotein E (ApoE), a marker for activated microglia in teleosts. Three-dimensional imaging of the distribution of ApoE-expressing microglia in the irradiated embryonic brain clearly showed that ApoE-expressing microglia were abundant only in the late phase of phagocytosis during tissue repair induced by irradiation, while few microglia expressed ApoE in the initial phase of phagocytosis. This strongly suggests that ApoE has a significant function in the late phase of phagocytosis by microglia in the medaka brain. In addition, the distribution of microglia in p53-deficient embryos at the late phase of phagocytosis was almost the same as in wild-type embryos, despite the low numbers of irradiation-induced apoptotic neurons, suggesting that constant numbers of activated microglia were recruited at the late phase of phagocytosis irrespective of the extent of neuronal injury. This medaka model of microglia demonstrated specific recruitment after irradiation in the developing CNS and could provide a useful potential therapeutic strategy to counteract the detrimental effects of RT.  相似文献   
68.
Red algae are widely known to produce floridean starch but it remains unclear whether the molecular structure of this algal polyglucan is distinct from that of the starch synthesized by vascular plants and green algae. The present study shows that the unicellular species Porphyridium purpureum R-1 (order Porphyridiales, class Bangiophyceae) produces both amylopectin-type and amylose-type alpha-polyglucans. In contrast, Cyanidium caldarium (order Porphyridiales, class Bangiophyceae) synthesizes glycogen-type polyglucan, but not amylose. Detailed analysis of alpha-1,4-chain length distribution of P. purpureum polyglucan suggests that the branched polyglucan has a less ordered structure, referred to as semi-amylopectin, as compared with amylopectin of rice endosperm having a tandem-cluster structure. The P. purpureum linear amylose-type polyglucan, which has a lambda(max) of 630 nm typical of amylose-iodine complex and is resistant to Pseudomonas isoamylase digestion, accounts for less than 10% of the total polyglucans. We produced and isolated a cDNA encoding a granule-bound starch synthase (GBSS)-type protein of P. purpureum, which is probably the approximately 60-kDa protein bound tightly to the starch granules, resembling the amylose-synthesizing GBSS protein of green plants. The present investigation indicates that the class Bangiophyceae includes species producing both semi-amylopectin and amylose, and species producing glycogen alone.  相似文献   
69.
Our study measured circulating microRNA (miRNA) levels in the plasma of calsequestrin (CSQ)-tg mouse, a severe heart failure model, and evaluated whether treatment with angiotensin II type 1 receptor blocker, azilsartan medoxomil (AZL-M) influenced their levels using miRNA array analysis. MiR-146a, miR-149, miR-150, and miR-342-3p were reproducibly reduced in the plasma of CSQ-tg mice. Among them, miR-146a and miR-342-3p were significantly restored by AZL-M, which were associated with improvement of survival rate and reduction of congestion. These results suggest that miRNA, especially miR-146a and miR-342-3p, could be used as potential biomarkers for evaluating the efficacy of anti-heart failure drugs.  相似文献   
70.
2-[3-(2-Thioxopyrrolidin-3-ylidene)methyl]-tryptophan (TPMT) is a yellow pigment of salted radish roots (takuan-zuke) derived from 4-methylthio-3-butenyl isothiocyanate (MTBITC), the pungent component of radish roots. Here, we prepared salted radish and analyzed the behavior of the yellow pigment and related substances in the dehydration process and long-term salting process. All salted radish samples turned yellow, and their b* values increased with time and temperature. The salted radish that was sun-dried and pickled at room temperature turned the brightest yellow, and the generation of TPMT was clearly confirmed. These results indicate that tissue shrinkage due to dehydration, salting temperature, and pH play important roles in the yellowing of takuan-zuke.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号