首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   71篇
  2022年   10篇
  2021年   11篇
  2020年   4篇
  2019年   14篇
  2018年   18篇
  2017年   23篇
  2016年   27篇
  2015年   38篇
  2014年   65篇
  2013年   96篇
  2012年   76篇
  2011年   84篇
  2010年   33篇
  2009年   48篇
  2008年   67篇
  2007年   72篇
  2006年   66篇
  2005年   63篇
  2004年   77篇
  2003年   59篇
  2002年   67篇
  2001年   31篇
  2000年   22篇
  1999年   26篇
  1998年   16篇
  1997年   13篇
  1996年   9篇
  1995年   11篇
  1994年   8篇
  1993年   17篇
  1992年   20篇
  1991年   19篇
  1990年   14篇
  1989年   17篇
  1988年   9篇
  1987年   15篇
  1986年   9篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   3篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1966年   2篇
  1964年   1篇
  1963年   2篇
排序方式: 共有1339条查询结果,搜索用时 15 毫秒
991.
Peat swamp forest is an important refuge for biodiversity in Southeast Asia and is now becoming a target of exploitation. The scarcity of information on avifauna and ecology of birds in peat swamp forests prevents understanding of the effects of land use change on avifauna. In this study, we describe the bird assemblages in habitats with different land uses by comparing species richness, community composition, and feeding guild patterns in Bukit Batu, Indonesia. Bird assemblages in natural peat swamp forests (NPF), high-maintenance industrial acacia plantations (planted acacia forest, PAF), low-maintenance rubber plantations (jungle rubber forest, JRF), and village areas (VIL) were studied using a fixed-radius point-count method. Of the 95 species observed, 45, 20, 35, and 48 species were observed in NPF, PAF, JRF, and VIL, respectively. Estimated species richness was the highest in NPF, followed by VIL, JRF, and PAF. NPF had the highest species diversity and β-diversity, more endangered species, and a distinctive species composition characterized by fly-catching insectivores. The relative conservation value of PAF was notably low, particularly compared with JRF. The avifauna in VIL was characterized by more generalists that favor open spaces and therefore is not considered an important habitat for forest-dependent birds that are of conservation concern. Our results indicate that NPF has irreplaceable value for bird diversity conservation, but low-maintenance rubber plantations were home to several forest-dependent species and partially supported bird diversity, particularly compared with high-maintenance acacia plantations.  相似文献   
992.
Plants can respond to insect herbivory in various ways to avoid reductions in fitness. However, the effect of herbivory on plant performance can vary depending on the seasonal timing of herbivory. We investigated the effects of the seasonal timing of herbivory on the performance of sagebrush (Artemisia tridentata). Sagebrush is known to induce systemic resistance by receiving volatiles emitted from clipped leaves of the same or neighboring plants, which is called volatile communication. Resistance to leaf herbivory is known to be induced most effectively after volatile communication in spring. We experimentally clipped 25 % of leaves of sagebrush in May when leaves were expanding, or in July when inflorescences were forming. We measured the growth and flower production of clipped plants and neighboring plants which were exposed to volatiles emitted from clipped plants. The treatment conducted in spring reduced the growth of clipped plants. This suggests that early season leaf herbivory is detrimental because it reduces the opportunities for resource acquisition after herbivory, resulting in strong induction of resistance in leaves. On the other hand, the late season treatment increased flower production in plants exposed to volatiles, which was caused mainly by the increase in the number of inflorescences. Because the late season treatment occurred when sagebrush produces inflorescences, sagebrush may respond to late herbivory by increasing compensation ability and/or resistance in inflorescences rather than in leaves. Our results suggest that sagebrush can change responses to herbivory and subsequent volatile communication seasonally and that the seasonal variation in responses may reduce the cost of induced resistance.  相似文献   
993.
2′-O-Methylribonucleosides (2′-OMe-NRs) are promising raw materials for nucleic acid drugs because of their high thermal stability and nuclease tolerance. In the course of microbial screening for metabolic activity toward 2′-OMe-NRs, Lactobacillus buchneri LBK78 was found to decompose 2′-O-methyluridine (2′-OMe-UR). The enzyme responsible was partially purified from L. buchneri LBK78 cells by a four-step purification procedure, and identified as a novel nucleoside hydrolase. This enzyme, LbNH, belongs to the nucleoside hydrolase superfamily, and formed a homotetrameric structure composed of subunits with a molecular mass around 34 kDa. LbNH hydrolyzed 2′-OMe-UR to 2′-O-methylribose and uracil, and the kinetic constants were Km of 0.040 mM, kcat of 0.49 s?1, and kcat/Km of 12 mM?1 s?1. In a substrate specificity analysis, LbNH preferred ribonucleosides and 2′-OMe-NRs as its hydrolytic substrates, but reacted weakly with 2′-deoxyribonucleosides. In a phylogenetic analysis, LbNH showed a close relationship with purine-specific nucleoside hydrolases from trypanosomes.  相似文献   
994.
Previous studies have indicated that extended exposure to a high level of sound might increase the risk of hearing loss among professional symphony orchestra musicians. One of the major problems associated with musicians’ hearing loss is difficulty in estimating its risk simply on the basis of the physical amount of exposure, i.e. the exposure level and duration. The aim of this study was to examine whether the measurement of the medial olivocochlear reflex (MOCR), which is assumed to protect the cochlear from acoustic damage, could enable us to assess the risk of hearing loss among musicians. To test this, we compared the MOCR strength and the hearing deterioration caused by one-hour instrument practice. The participants in the study were music university students who are majoring in the violin, whose left ear is exposed to intense violin sounds (broadband sounds containing a significant number of high-frequency components) during their regular instrument practice. Audiogram and click-evoked otoacoustic emissions (CEOAEs) were measured before and after a one-hour violin practice. There was a larger exposure to the left ear than to the right ear, and we observed a left-ear specific temporary threshold shift (TTS) after the violin practice. Left-ear CEOAEs decreased proportionally to the TTS. The exposure level, however, could not entirely explain the inter-individual variation in the TTS and the decrease in CEOAE. On the other hand, the MOCR strength could predict the size of the TTS and CEOAE decrease. Our findings imply that, among other factors, the MOCR is a promising measure for assessing the risk of hearing loss among musicians.  相似文献   
995.
A short history of MADS-box genes in plants   总被引:47,自引:0,他引:47  
Evolutionary developmental genetics (evodevotics) is a novel scientific endeavor which assumes that changes in developmental control genes are a major aspect of evolutionary changes in morphology. Understanding the phylogeny of developmental control genes may thus help us to understand the evolution of plant and animal form. The principles of evodevotics are exemplified by outlining the role of MADS-box genes in the evolution of plant reproductive structures. In extant eudicotyledonous flowering plants, MADS-box genes act as homeotic selector genes determining floral organ identity and as floral meristem identity genes. By reviewing current knowledge about MADS-box genes in ferns, gymnosperms and different types of angiosperms, we demonstrate that the phylogeny of MADS-box genes was strongly correlated with the origin and evolution of plant reproductive structures such as ovules and flowers. It seems likely, therefore, that changes in MADS-box gene structure, expression and function have been a major cause for innovations in reproductive development during land plant evolution, such as seed, flower and fruit formation.  相似文献   
996.
The B-domain, which is one of IgG-binding domains of staphylococcal protein A, was repeated five times and a cysteine residue was introduced at its C-terminus by a genetic engineering technique. The resulting protein, designated B5C1, retained the same IgG-binding activity as native protein A. The B5C1 was assembled on a gold plate surface by utilizing a strong affinity between thiol of cysteine and a gold surface. IgG-binding activity of B5C1 on a gold surface was much higher than that of physically adsorbed B5, which lacks cysteine residue. Furthermore, antigen-binding activity of immobilized antibody molecules through the use of assembled B5C1 on a gold surface was about 4.3 times higher than that of physically adsorbed antibody molecules. Immobilization of highly oriented antibody molecules was realized with the engineered IgG-binding protein.  相似文献   
997.
Reactive oxygen species (ROS) released from polymorphonuclear leukocytes and macrophages could cause DNA damage, but also induce cell death. Therefore inhibition of cell death must be an important issue for accumulation of genetic changes in lymphoid cells in inflammatory foci. Scavengers in the post culture medium of four lymphoid cell lines, lymphoblastoid cell lines (LCL), Raji, BJAB and Jurkat cells, were examined. Over 80% of cultured cells showed cell death 24 h after xanthine (X)/xanthine oxidase (XOD) treatment, which was suppressed by addition of post culture medium from four cell lines in a dose-dependent manner. H2O2 but not O2*- produced by the X/XOD reaction was responsible for the cytotoxity, thus we used H2O2 as ROS stress thereafter. The H2O2-scavenging activity of post culture media from four cell lines increased rapidly at the first day and continued to increase in the following 2-3 days for LCL, Raji and BJAB cells. The scavenging substance was shown to be pyruvate, with various concentrations in the cultured medium among cell lines. Over 99% of total pyruvate was present in the extracellular media and less than 1% in cells. alpha-Cyano-4-hydroxycinnamate, a specific inhibitor of the H+-monocarbohydrate transporter, increased the H2O2-scavenging activity in the media from all four cell lines via inhibition of pyruvate re-uptake by cultured cells from the media. These findings suggest that lymphoid cells in inflammatory foci could survive even under ROS by producing pyruvate, so that accumulation of lymphoid cells with DNA damage is possible.  相似文献   
998.
Neuropeptide Y (NPY) is known to induce robust feeding through the action of NPY receptors in the hypothalamus. Among the subtypes of NPY receptors, Y(1) receptors may play a key role in feeding regulation. In the present study, we demonstrated that a novel Y(1) antagonist, J-104870, shows high selectivity and potency for the Y(1) receptor with an anorexigenic effect on NPY-mediated feeding. J-104870 displaced [(125)I]peptide YY (PYY) binding to cloned human and rat Y(1) receptors with K(i) values of 0.29 and 0.54 nM, respectively, and inhibited the NPY (10 nM)-induced increase in intracellular calcium levels (IC(50) = 3.2 nM) in cells expressing human Y(1) receptors. In contrast, J-104870 showed low affinities for human Y(2) (K(i) > 10 microM), Y(4) (K(i) > 10 microM), and Y(5) receptors (K(i) = 6 microM). In rat hypothalamic membranes, J-104870 also completely displaced the binding of [(125)I]1229U91, which is known to bind to the typical Y(1) receptor, with a high affinity (K(i) = 2.0 nM). Intracerebroventricular (ICV) injection of J-104870 (200 microg) significantly suppressed NPY (5 microg)-induced feeding in satiated Sprague-Dawley rats by 74%. Furthermore, ICV and oral administration of J-104870 (200 microg and 100 mg/kg, respectively) significantly suppressed spontaneous food intake in Zucker fatty rats. These findings suggested that J-104870 is a selective and potent nonpeptide Y(1) antagonist with oral bioavailability and brain penetrability. In addition, the anorexigenic effect of J-104870 clearly revealed the participation of the Y(1) receptor in NPY-mediated feeding regulation. The potent and orally active Y(1) antagonist J-104970 is a useful tool for elucidating the physiological roles of NPY in obesity.  相似文献   
999.
Previously, the activity of DNA polymerase alpha was found in the meiotic prophase I including non-S phase stages, in the basidiomycetes, Coprinus cinereus. To study DNA polymerase alpha during meiosis, we cloned cDNAs for the C. cinereus DNA polymerase alpha catalytic subunit (p140) and C. cinereus primase small subunit (p48). Northern analysis indicated that both p140 and p48 are expressed not only at S phase but also during the leptotene/zygotene stages of meiotic prophase I. In situ immuno-staining of cells at meiotic prophase I revealed a sub population of p48 that does not colocalize with p140 in nuclei. We also purified the pol alpha-primase complex from meiotic cells by column chromatography and characterized its biochemical properties. We found a subpopulation of primase that was separated from the pol alpha-primase complex by phosphocellulose column chromatography. Glycerol gradient density sedimentation results indicated that the amount of intact pol alpha-primase complex in crude extract is reduced, and that a smaller complex appears upon meiotic development. These results suggest that the form of the DNA polymerase alpha-primase complex is altered during meiotic development.  相似文献   
1000.
To investigate the dynamics of tissue oxygen demand and supply during brain functions, we simultaneously recorded Po(2) and local cerebral blood flow (LCBF) with an oxygen microelectrode and laser Doppler flowmetry, respectively, in rat somatosensory cortex. Electrical hindlimb stimuli were applied for 1, 2, and 5 s to vary the duration of evoked cerebral metabolic rate of oxygen (CMR(O(2))). The electrical stimulation induced a robust increase in Po(2) (4-9 Torr at peak) after an increase in LCBF (14-26% at peak). A consistent lag of approximately 1.2 s (0.6-2.3 s for individual animals) in the Po(2) relative to LCBF was found, irrespective of stimulus length. It is argued that the lag in Po(2) was predominantly caused by the time required for oxygen to diffuse through tissue. During brain functions, the supply of fresh oxygen further lagged because of the latency of LCBF onset ( approximately 0.4 s). The results indicate that the tissue oxygen supports excess demand until the arrival of fresh oxygen. However, a large drop in Po(2) was not observed, indicating that the evoked neural activity demands little extra oxygen or that the time course of excess demand is as slow as the increase in supply. Thus the dynamics of Po(2) during brain functions predominantly depend on the time course of LCBF. Possible factors influencing the lag between demand and supply are discussed, including vascular spacing, reactivity of the vessels, and diffusivity of oxygen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号