首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1418篇
  免费   101篇
  2022年   16篇
  2021年   24篇
  2020年   18篇
  2019年   18篇
  2018年   28篇
  2017年   23篇
  2016年   39篇
  2015年   65篇
  2014年   74篇
  2013年   74篇
  2012年   104篇
  2011年   109篇
  2010年   72篇
  2009年   70篇
  2008年   84篇
  2007年   74篇
  2006年   72篇
  2005年   62篇
  2004年   61篇
  2003年   62篇
  2002年   44篇
  2001年   28篇
  2000年   28篇
  1999年   32篇
  1998年   12篇
  1997年   17篇
  1996年   13篇
  1995年   11篇
  1994年   4篇
  1993年   7篇
  1992年   10篇
  1991年   4篇
  1990年   8篇
  1989年   14篇
  1988年   10篇
  1987年   9篇
  1986年   12篇
  1985年   14篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1975年   5篇
  1968年   3篇
  1965年   3篇
  1963年   3篇
排序方式: 共有1519条查询结果,搜索用时 78 毫秒
31.
Tumour necrosis factor-α(TNF-α) was found to be a cell cycle-independent apoptogenic cytokine in cultured fibroblast L929 cells. This assertion is based on the observations (1) TNF-α increased the number of cells with hypo-diploid DNA in a time dependent manner as revealed by flow cytometry, and (2) TNF-α induced DNA fragmentation as resolved by agarose gel electrophoresis. When cells were exposed to TNF-α (50ng/ml), a slow rise in intracellular free Ca2+ level and a delayed increase in the production of reactive oxygen species (ROS) (both observed 3h after the addition of TNF-α) were observed in fluo-3 and furared or dichlorofluorescein loaded cells, respectively. Interestingly, challenge of cells with TNF-α in the presence of BAPTA/AM, an intracellular Ca2+ chelator, decreased the release of ROS. Removal of ROS by 4-hydroxy 2,2,6,6-tetra-methyl-piperidinooxy (4OH-TEMPO) blocked the TNF-α-mediated Ca2+ rise. Moreover, when cells were exposed to TNF-α with both 4OH-TEMPO and BAPTA/AM, more viable cells were found than from treatment with either BAPTA/AM or 4OH-TEMPO. These results suggest that ROS and cellular Ca2+ are two cross-talk messengers important in TNF-α-mediated apoptosis.  相似文献   
32.
Optical magnetic responses were demonstrated in subwavelength Ag–MgF2–Ag grating structures for transverse magnetic-polarized light. The subwavelength Ag–MgF2–Ag grating structures were fabricated using e-beam lithography followed by a lift-off process. By fixing the Ag–MgF2–Ag strip dimension, the effect of the stripe width on the magnetic resonances was compared for two different grating pitches. With further reduced grating pitch, we pushed the optical magnetic resonances to near UV (deep blue). Numerical simulations confirmed our experimental observations and were in good agreement with the experimental results.  相似文献   
33.
Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.  相似文献   
34.
During the last decade, an increasing number of papers have described the use of various genera of bacteria, including E. coli and S. typhimurium, in the treatment of cancer. This is primarily due to the facts that not only are these bacteria capable of accumulating in the tumor mass, but they can also be engineered to deliver specific therapeutic proteins directly to the tumor site. However, a major obstacle exists in that bacteria because the plasmid carrying the therapeutic gene is not needed for bacterial survival, these plasmids are often lost from the bacteria. Here, we report the development of a balanced-lethal host-vector system based on deletion of the glmS gene in E. coli and S. typhimurium. This system takes advantage of the phenotype of the GlmS mutant, which undergoes lysis in animal systems that lack the nutrients required for proliferation of the mutant bacteria, D-glucosamine (GlcN) or N-acetyl-D-glucosamine (GlcNAc), components necessary for peptidoglycan synthesis. We demonstrate that plasmids carrying a glmS gene (GlmS+p) complemented the phenotype of the GlmS mutant, and that GlmS+p was maintained faithfully both in vitro and in an animal system in the absence of selection pressure. This was further verified by bioluminescent signals from GlmS +pLux carried in bacteria that accumulated in grafted tumor tissue in a mouse model. The signal was up to several hundred-fold stronger than that from the control plasmid, pLux, due to faithful maintenance of the plasmid. We believe this system will allow to package a therapeutic gene onto an expression plasmid for bacterial delivery to the tumor site without subsequent loss of plasmid expression as well as to quantify bioluminescent bacteria using in vivo imaging by providing a direct correlation between photon flux and bacterial number.  相似文献   
35.
Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.  相似文献   
36.
Molecular and Cellular Biochemistry - Intracoronary stenting is a common procedure in patients with coronary artery disease (CAD). Stent deployment stretches and denudes the endothelial layer,...  相似文献   
37.
Abstract

Graphene based materials have attracted global attention due to their excellent properties. GO-metal oxide nanocomposites have been conjugated with biomolecules for the development of novel materials and potentially used as biomarkers. Herein, a detailed study on the interaction of Bovine serum albumin (BSA) with MnO2@RGO (manganese dioxide-reduced graphene oxide) nanocomposites (NC) has been carried out. MnO2@RGO nanocomposites were prepared through a template/surfactant free hydrothermal route at 180?°C for 12?h by varying the graphene oxide (GO) concentration. Different biophysical experiments have been carried out to evaluate molecular interactions between BSA and NCs. Intrinsic fluorescence has been used to quantify the quenching efficiency of NCs and the binding association of BSA-NC complexes. NCs effectively quenched the intrinsic fluorescence of BSA via static and dynamic mechanism. Further, the results indicate that the molecular interactions of NC with BSA are dependent on the GO percentage in NC. Circular dichroism results demonstrate nominal changes in the secondary structure of BSA in presence of NCs. Also, the esterase-like activity of BSA was marginally affected after adsorption upon NCs. In addition, the FESEM micrographs reveal that the protein-NC complexes consist of nanorod and sheet-like morphologies are forming aggregates of different sizes. We hope that this study will provide a basis for the design of novel graphene based and other related nanomaterials for several biological applications.

Communicated by Ramaswamy H. Sarma  相似文献   
38.
Field experiments were carried out with Indian mustard (Brassica juncea L. Cv RLM 1359) to investigate the influence of biocontrol agents on seeds from plants infected with Alternaria blight. The biocontrol agents viz, Trichoderma harzianum, Pseudomonas fluorescens and Bacillus subtilis were applied as seed treatment/seed treatment coupled with spray on 30 and 60 days after sowing of seeds in experimental fields. The plants treated with different biocontrol agents were more developed than non-treated plants throughout the experiment. Biochemical analysis revealed that application of biocontrol agents resulted in increase in lipid and protein content in seeds from treated plants. The proportion of various lipidic fractions i.e. phospholipids, glycolipids and sterol content in seeds increased with a corresponding decrease in total glycerides. The proportion of 18:3, 20:1 and 22:1 fatty acids increased while that of 18:1 and 18:2 fatty acids decreased in seeds with application of biocontrol agents. There were both qualitative and quantitative differences in the banding patterns of albumin and globulin proteins after application of biocontrol agents. The data suggested that biochemical alterations in the host induced by treatment with biocontrol agents could be associated with defence mechanisms and enhanced growth of the plant.  相似文献   
39.
Structural analysis of stigma development in sunflower highlights the secretory role of papillae due to its semi-dry nature. Production of lipid-rich secretions is initiated at the staminate stage of the flowers in stigma development and increases at the receptive stage, coinciding with an extensive development of elaioplasts and endoplasmic reticulum network in the basal region of the papillae. Transfer cells, earlier identified only in the wet type of stigma, are also present in the transmitting tissue of the sunflower stigma. Attainment of physiological maturity by the stigmatic tissue, accompanying development from bud to pistillate stage, appears to affect the initial steps of pollen–stigma interaction. The nature of self-incompatibility in Helianthus has also been investigated in relation with pollen adhesion, hydration and germination. Pollen adhesion to the stigma is a rapid process in sunflower and stigma papillae exhibit greater affinity for pollen during cross pollination as compared to self-pollination. Components of the pollen coat and the pellicle on the surface of stigmatic papillae are critical for the initial phase of pollen–stigma interaction (adhesion and hydration). The lipidic components of pollen coat and the proteinaceous and lipidic components from the surface of the papillae coalesce during adhesion, leading to the movement of water from stigma to the pollen, thereby causing pollen hydration and its subsequent germination. Pollen germination (both in self-and cross-pollen) on the stigma surface and the growth of the pollen tube characterize the flexibility of self-incompatibility in sunflower. Compatible pollen grains germinate and the pollen tube penetrates the stigma surface to enter the nutrient-rich transmitting tissue. The pollen tube from incompatible pollen germination, however, fails to penetrate the stigmatic tissue and it grows parallel to the papillae. Present findings provide new insights into structural and functional relationships during stigma development and pollen–stigma interaction.  相似文献   
40.
With the rise of antibody based therapeutics as successful medicines, there is an emerging need to understand the fundamental antibody conformational dynamics and its implications towards stability of these medicines. Both deglycosylation and thermal stress have been shown to cause conformational destabilization and aggregation in monoclonal antibodies. Here, we study instabilities caused by deglycosylation and by elevated temperature (400 K) by performing molecular dynamic simulations on a full length murine IgG2a mAb whose crystal structure is available in the Protein Data bank. Cα‐atom root mean square deviation and backbone root mean square fluctuation calculations show that deglycosylation perturbs quaternary and tertiary structures in the CH2 domains. In contrast, thermal stress pervades throughout the antibody structure and both Fabs and Fc regions are destabilized. The thermal stress applied in this study was not sufficient to cause large scale unfolding within the simulation time and most amino acid residues showed similar average solvent accessible surface area and secondary structural conformations in all trajectories. CH3 domains were the most successful at resisting the conformational destabilization. The simulations helped identify aggregation prone regions, which may initiate cross‐β motif formation upon deglycosylation and upon applying thermal stress. Deglycosylation leads to increased backbone fluctuations and solvent exposure of a highly conserved APR located in the edge β‐strand A of the CH2 domains. Aggregation upon thermal stress is most likely initiated by two APRs that overlap with the complementarity determining regions. This study has important implications for rational design of antibody based therapeutics that are resistant towards aggregation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号