首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1418篇
  免费   101篇
  1519篇
  2022年   16篇
  2021年   24篇
  2020年   18篇
  2019年   18篇
  2018年   28篇
  2017年   23篇
  2016年   39篇
  2015年   65篇
  2014年   74篇
  2013年   74篇
  2012年   104篇
  2011年   109篇
  2010年   72篇
  2009年   70篇
  2008年   84篇
  2007年   74篇
  2006年   72篇
  2005年   62篇
  2004年   61篇
  2003年   62篇
  2002年   44篇
  2001年   28篇
  2000年   28篇
  1999年   32篇
  1998年   12篇
  1997年   17篇
  1996年   13篇
  1995年   11篇
  1994年   4篇
  1993年   7篇
  1992年   10篇
  1991年   4篇
  1990年   8篇
  1989年   14篇
  1988年   10篇
  1987年   9篇
  1986年   12篇
  1985年   14篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1975年   5篇
  1968年   3篇
  1965年   3篇
  1963年   3篇
排序方式: 共有1519条查询结果,搜索用时 15 毫秒
21.
22.
Glucocerebrosidase was purified from human placenta approximately 10,600-fold to apparent homogeneity with an overall yield of 37% using cholate extraction, ammonium sulfate fractionation, butanol delipidation, and a two-step high-performance hydrophobic and gel permeation column chromatography method. A Phenyl-5PW (21.5 X 150 mm) column was used in the first step. Approximately one litre of delipidated and dialysed extract containing 3.7 X 10(6) units of enzyme activity from 1 kg of placental tissue was processed by the column at a flow rate of 5 ml/min. Glucocerebrosidase was eluted using a linear cholate gradient (2-3%). There was a 50-fold purification and 89% recovery. The run was completed in about 7 h. In the second step, the concentrated enzyme preparation from the phenyl column was run through two Bio-Sil TSK 250 gel permeation columns (21.5 X 600 mm) connected in series at a flow rate of 1.5 ml/min. A symmetrical peak of glucocerebrosidase activity (Ve = 253 ml) which had constant specific activity (47,000 units/h/mg protein) was noted. There was a 17-fold purification and 80% recovery in this run which was completed in 4 h. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and protein staining with silver compounds of the purified preparation revealed the presence of one band of Mr 68,000.  相似文献   
23.
Quorum sensing is used by a large variety of bacteria to regulate gene expression in a cell-density-dependent manner. Bacteria can synchronize population behavior using small molecules called autoinducers that are produced by cognate synthases and recognized by specific receptors. Quorum sensing plays critical roles in regulating diverse cellular functions in bacteria, including bioluminescence, virulence gene expression, biofilm formation, and antibiotic resistance. The best-studied autoinducers are acyl homoserine lactone (AHL) molecules, which are the primary quorum sensing signals used by Gram-negative bacteria. In this review we focus on the AHL-dependent quorum sensing system and highlight recent progress on structural and mechanistic studies of AHL synthases and the corresponding receptors. Crystal structures of LuxI-type AHL synthases provide insights into acyl-substrate specificity, but the current knowledge is still greatly limited. Structural studies of AHL receptors have facilitated a more thorough understanding of signal perception and established the molecular framework for the development of quorum sensing inhibitors.  相似文献   
24.
Endophytic fungi from Nyctanthes arbor-tristis were isolated and evaluated for their antimicrobial activity. A total of 19 endophytic fungi were isolated from 400 segments of healthy leaf and stem tissues of N. arbor-tristis. Eighteen endophytic fungi were obtained from leaf, while only ten from stem. Alternaria alternata had the highest colonization frequency (15.0%) in leaf, whereas Cladosporium cladosporioides ranked first in stem with a colonization frequency of 12%. The diversity and species richness were found higher in leaf tissues than in stem. The similarity indices between leaf and stem were 0.473 for Jaccard’s and 0.642 for the Sorenson index, respectively. Of 16, 12 (75%) endophytic fungal extracts showed antibacterial activity against either one or more pathogenic bacteria. The endophytic Nigrospora oryzae showed maximum inhibition against Shigella sp. and Pseudomonas aeruginosa. The leaf endophytes Colletotrichum dematium and Chaetomium globosum exhibited a broad range of anibacterial activity and were active against Shigella flexnii, Shigella boydii, Salmonella enteritidis, Salmonella paratyphi, and P. aeruginosa. Nine out of 16 (56.25%) endophytic fungi exhibited antifungal activity to one or more fungal pathogens. Colletotrichum dematium inhibited 55.87% of the radial growth of the phytopathogen Curvularia lunata. The antimicrobial activity of these endophytic microorganisms could be exploited in the biotechnological, medicinal, and agricultural industries.  相似文献   
25.

Aims

The present study was planned to investigate the diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing bacteria from the rhizosphere of wheat plants and subsequent evaluation of selected PGPR on growth enhancement of wheat seedlings under drought and saline conditions.

Methods

ACC deaminase producing plant growth promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wheat and identified using 16S rRNA gene sequence analysis. Isolates were evaluated for various direct and indirect plant growth promoting (PGP) traits. Plant inoculation experiment was conducted using isolates IG 19 and IG 22 in wheat to assess their plant growth promotion potential under salinity and drought stress.

Results

Thirty-eight ACC deaminase producing PGPR were isolated which belonged to 12 distinct genera and falling into four phyla γ-proteobacteria, β-proteobacteria, Flavobacteria and Firmicutes. Klebsiella sp. was the most abundant genera and followed by Enterobacter sp. The isolates exhibited ACC deaminase activities ranging from 0.106–0.980 μM α- ketobutyrate μg protein?1 h?1. The isolates showed multiple PGP traits such as IAA production, phosphate, zinc, potassium solubilization and siderophore production. Enterobacter cloacae (IG 19) and Citrobacter sp. (IG 22) inoculated wheat seedlings showed notable increases in fresh and dry biomass under non-stress as well as under stressed condition.

Conclusion

To the best of our knowledge this is the first report of presence of ACC deaminase activity and other PGP traits from the genus Citrobacter and Empedobacter. Our finding revealed that the γ-proteobacteria group dominated the wheat rhizosphere. Plant inoculation with PGPR could be a sustainable approach to alleviate abiotic stresses in wheat plants. These native PGPR isolates could be used as potential biofertilizers for sustainable agriculture.
  相似文献   
26.
The polypeptides of etioplast and chloroplast fractions, purified on Percoll discontinuous gradient, were phosphorylated in vitro using (γ-32P)ATP, resolved by SDS-PAGE and autoradiographed. In general, about 15-18 phosphopolypeptides in the range of 14-150 kD were distinctly visible in autoradiograms of both organelle fractions with varying degree of radiolabel incorporation. Although short-term irradiation with red or far-red light did not have any significant effect on phosphorylation status of etioplast polypeptides, in vivo irradiation with 1 h white light, followed by in vitro phosphorylation, decreased phosphorylation of a 116 kD polypeptide and increased the phosphorylation of polypeptides of 38 kD and a doublet around 20 kD. Strikingly, the phosphorylation status of 116 kD etioplast polypeptide was adversely affected by Ca2+ as well, and this phosphopolypeptlde was not distinctly visible in the autoradiogram of the chloroplast fraction proteins. However, in vitro phosphorylation of 98, 57 and 50 kD polypeptides of both etioplast and chloroplast fractions was found to be Ca2+ dependent. Unlike Ca2+, 3′,5′-cyclic AMP down-regulated the phosphorylation of several polypeptides of both etioplasts and chloroplasts, including 98 and 50 kD, and up-regulated the phosphorylation of 32 and 57 kD polypeptides. The significance of these observations on changes in phosphoprotein profile of etioplasts and chloroplasts, as influenced by light, Ca2+ and cyclic nucleotides, has been discussed.  相似文献   
27.
Galston , Arthur W., Ravindar Kaur , Nirmala Maheshwari , and Satish C. Maheshwari . (Yale U., New Haven, Conn.) Pectin-protein interaction as a basis for au xin-induced alteration of protein heat coagulability. Amer. Jour. Bot. 50(5): 487–494. Illus. 1963.—The in vivo administration of 2,4-D or other auxins to etiolated or green pea stem sections results in a decreased heat coagulability of the macromolecular components of the particle-free cytoplasm of these tissues. Addition of auxin to homogenates is without effect. Gibberellins alone are also without effect, but may enhance the in vivo action of auxin. The altered heat coagulability may become apparent as soon as 4–6 hr after auxin administration, though longer induction periods are sometimes necessary. The auxin eff'ect is prevented by general metabolic inhibitors and most effectively by ethionine, whose inhibitory action is completely reversed by methionine. Electrophoresis on paper and on starch revealed no major differences between the proteins of control and auxin-treated stems. Approximately 90% of the weight of the heat coagulum can be accounted for as protein; small quantities of nucleic acids, lipids, polysaccharides and pectins are also present. The “soluble pectin” content of the homogenate before heat coagulation is at least doubled by auxin treatment. This increase is also inhibited by ethionine, whoso effect is annulled by methionine. Addition of citrus pectin to control homogenates stabilizes the proteins against heat coagulation. It thus appears likely that the effect of auxin on the heat coagulability of the cytoplasmic proteins can be explained through effects on the metabolism of the materials which have been called “cold-water-soluble pectins.”  相似文献   
28.
In the present study a major protein has been purified from the venom of Indian Daboia russelii russelii using gel filtration, ion exchange and Rp-HPLC techniques. The purified protein, named daboxin P accounts for ~24% of the total protein of the crude venom and has a molecular mass of 13.597 kDa. It exhibits strong anticoagulant and phospholipase A2 activity but is devoid of any cytotoxic effect on the tested normal or cancerous cell lines. Its primary structure was deduced by N-terminal sequencing and chemical cleavage using Edman degradation and tandem mass spectrometry. It is composed of 121 amino acids with 14 cysteine residues and catalytically active His48 -Asp49 pair. The secondary structure of daboxin P constitutes 42.73% of α-helix and 12.36% of β-sheet. It is found to be stable at acidic (pH 3.0) and neutral pH (pH 7.0) and has a Tm value of 71.59 ± 0.46°C. Daboxin P exhibits anticoagulant effect under in-vitro and in-vivo conditions. It does not inhibit the catalytic activity of the serine proteases but inhibits the activation of factor X to factor Xa by the tenase complexes both in the presence and absence of phospholipids. It also inhibits the tenase complexes when active site residue (His48) was alkylated suggesting its non-enzymatic mode of anticoagulant activity. Moreover, it also inhibits prothrombinase complex when pre-incubated with factor Xa prior to factor Va addition. Fluorescence emission spectroscopy and affinity chromatography suggest the probable interaction of daboxin P with factor X and factor Xa. Molecular docking analysis reveals the interaction of the Ca+2 binding loop; helix C; anticoagulant region and C-terminal region of daboxin P with the heavy chain of factor Xa. This is the first report of a phospholipase A2 enzyme from Indian viper venom which targets both factor X and factor Xa for its anticoagulant activity.  相似文献   
29.
30.
How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号