首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   5篇
  134篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   11篇
  2016年   6篇
  2015年   7篇
  2014年   4篇
  2013年   13篇
  2012年   9篇
  2011年   13篇
  2010年   5篇
  2009年   2篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1990年   1篇
  1976年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
81.
The tocopherols are amphipathic antioxidant synthesized by photosynthetic organisms, which forms the essential component in the human diet. To increase the α-tocopherol content in tobacco, two approaches have been attempted in this study: (1) transgenic approach, by constitutive overexpression of the genes encoding Arabidopsis homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) through Agrobacterium-mediated genetic transformation; (2) non-transgenic approach, by supplementation of intermediates/precursors of vitamin E biosynthesis like tyrosine, p-hydroxyphenyl pyruvic acid, homogentisic acid (HGA) and phytol in different concentrations and combinations using cell suspension culture system. Molecular analyses by PCR, RT-PCR and Southern hybridization were carried out to confirm the HPT and TC expressing transgenic tobacco lines. The α-tocopherol content in transgenic plants expressing HPT and TC increase by 5.5 and 4.1, respectively, over the wild type. These results indicate that, HPT and TC activities are important in tobacco plants for enhancing the vitamin E content. In the second approach, the supplementation of precursor in cell suspension cultures, i.e., combination of 150 μM HGA + 100 μM phytol, showed the maximum enhancement of α-tocopherol, i.e., 36-fold. These findings clearly imply that enhancement of α-tocopherol levels in tobacco system is possible, if we could modulate the vitamin E metabolic pathway. This is a very useful finding for the large-scale production of natural Vitamin E. Among the two systems tested, cell suspension culture-based system is ideal over the transgenic technology due to its efficiency and no biosafety concerns.  相似文献   
82.
Young leaf explants of Ocimum sanctum L. incubated on solidified Murashige and Skoog (MS) medium supplemented with 2 mg l−1 1-naphthaleneacetic acid (NAA) and 0.2 mg l−1 kinetin (Kn) developed rhizogenic callus. When these were subcultured onto MS medium supplemented with 1.5 mg l−1 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 0.5 mg l−1 NAA, friable rhizogenic callus was observed. Upon transfer of this friable callus onto liquid MS medium containing 4 mg l−1 NAA and 1.3 mg l−1 6-benzyladnine (BA) under continuous agitation at 90 rpm and 16 h photoperiod, roots with an optimum dry weight of 1,460 mg l−1 were obtained. An ethyl acetate extract of these roots exhibited 1, 1–diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.  相似文献   
83.
Fusion proteins consisting of the ligand-binding domain of CTLA4 covalently attached to an antigen (Ag) are potent immunogens. This fusion strategy effectively induces Ag-specific immunity both when introduced as a DNA-based vaccine and as a recombinant protein. CTLA4 is a ligand for B7 molecules expressed on the surface of antigen-presenting cells (APCs), and this interaction is critical for the fusion protein to stimulate Ag-specific immunity. We show that interaction of the fusion protein with either B7-1 or B7-2 is sufficient to stimulate immune activity, and that T cells are essential for the development of IgG responses. In addition, we demonstrate that human dendritic cells (DCs) pulsed with CTLA4–Ag fusion proteins can efficiently present Ag to T cells and induce an Ag-specific immune response in vitro. These studies provide further mechanistic understanding of the process by which CTLA4–Ag fusion proteins stimulate the immune system, and represent an efficient means of generating Ag-specific T cells for immunotherapy.Dhanalakshmi Chinnasamy and Matt Tector contributed equally to this work  相似文献   
84.
Prostatic acid phosphatase (PAP) is a prostate cancer tumor antigen and a prostate-specific protein shared by rats and humans. Previous studies indicated that Copenhagen rats immunized with a recombinant vaccinia virus expressing human PAP (hPAP) developed PAP-specific cytotoxic T cells (CTL) with cross reactivity to rat PAP (rPAP) and evidence of prostate inflammation. Viral delivery of vaccine antigens is an active area of clinical investigation. However, a potential difficulty with viral-based immunizations is that immune responses elicited to the viral vector might limit the possibility of multiple immunizations. In this paper, we investigate the ability of another genetic immunization method, a DNA vaccine encoding PAP, to elicit antigen-specific CD8+ T cell immune responses. Specifically, Lewis rats were immunized with either a plasmid DNA-based (pTVG-HP) or vaccinia-based (VV-HP) vaccine each encoding hPAP. We determined that rats immunized with a DNA vaccine encoding hPAP developed a Th1-biased immune response as indicated by proliferating PAP-specific CD4+ and CD8+ cells and IFNγ production. Rats immunized with vaccinia virus encoding PAP did not develop a PAP-specific response unless boosted with a heterologous vaccination scheme. Most importantly, multiple immunizations with a DNA vaccine encoding the rat PAP homologue (pTVG-RP) could overcome peripheral self-tolerance against rPAP and generate a Th1-biased antigen-specific CD4+ and CD8+ T cell response. Overall, DNA vaccines provide a safe and effective method of generating prostate antigen-specific T cell responses. These findings support the investigation of PAP-specific DNA vaccines in human clinical trials.  相似文献   
85.
Culture conditions for a fine dispersion of plated cells of Oryza sativa L. cv. IR 20, have been worked out. These plated cells developed microcalli containing large number of somatic embryos and subsequently plantlets. By using single cells and clusters of 2 - 4 cells, an efficient DNA-delivery by microprojectile bombardment into cells and its transient expression were assessed by employing a plasmid construct containing β-glucuronidase gene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
86.
Plant tissues are made up of a broad range of proteins with a variety of properties. After extraction, solubilization of a diverse range of plant proteins for efficient proteomic analysis using two-dimensional electrophoresis is a challenging process. We tested the efficiency of 12 solubilization buffers in dissolving acidic and basic proteins extracted from mature seeds of wheat. The buffer containing two chaotropes (urea and thiourea), two detergents (3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate and N-decyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate), two reducing agents (dithiothreitol and tris (2-carboxyethyl) phosphine hydrochloride) and two types of carrier ampholytes (BioLyte pH 4-6 and pH 3-10) solubilized the most acidic proteins in the pH range between 4 and 7. The buffer made up of urea, thiourea, 3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate, DeStreak reagent (Amersham Biosciences, Uppsala, Sweden) and immobilized pH gradient buffer, pH 6-11 (Amersham Biosciences) solubilized the most basic proteins in the pH range between 6 and 11. These two buffers produced two-dimensional gels with high resolution, superior quality and maximum number of detectable protein (1425 acidic protein and 897 basic protein) spots.  相似文献   
87.
Allograft inflammatory factor‐1 (Aif‐1) is a 17 kDa EF hand motif‐bearing protein expressed primarily in developing spermatids and cells of monocyte/macrophage lineage. Increased Aif‐1 expression has been identified in clinically important conditions, including rheumatoid arthritis, systemic sclerosis, endometriosis, and transplant‐associated arteriosclerosis. Largely similar gene products arising from the same locus are known as ionized Ca2+ binding adapter‐1 (Iba1), microglial response factor‐1 (MRF1), and daintain; Iba1 in particular has emerged as a histologic marker of microglia and their activation in pathologic CNS conditions, including the response to facial nerve axotomy and stroke, uveitis, and experimental autoimmune neuritis and encephalomyelitis. Nevertheless, how aif‐1 gene products affect cellular function is only partly understood, and the physiologic significance of these products for male fertility, immune system development, and inflammation has not been described. To permit such investigations, we generated a mouse line with targeted deletion of the coding regions of the aif‐1 gene. Here we report that mice lacking Aif‐1 breed well and show normal post‐natal growth, but show resistance to disease in a model of collagen‐induced arthritis. We anticipate that these mice will be useful for studies of Aif‐1 function in a variety of immune and inflammatory disease models. genesis 51:734–740. © 2013 Wiley Periodicals, Inc.  相似文献   
88.
Adipose tissue is an easily accessible and abundant source of stem cells. Adipose stem cells (ASCs) are currently being researched as treatment options for repair and regeneration of damaged tissues. The standard culture conditions used for expansion of ASCs contain fetal bovine serum (FBS) which is undefined, could transmit known and unknown adventitious agents, and may cause adverse immune reactions. We have described a novel culture condition which excludes the use of FBS and characterised the resulting culture. Human ASCs were cultured in the novel culture medium, which included complement protein C3. These cultures, called C-ASCs, were compared with ASCs cultured in medium supplemented with FBS. Analysis of ASCs for surface marker profile, proliferation characteristics and differentiation potential indicated that the C-ASCs were similar to ASCs cultured in medium containing FBS. Using a specific inhibitor, we show that C3 is required for the survival of C-ASCs. This novel composition lends itself to being developed into a defined condition for the routine culture of ASCs for basic and clinical applications.  相似文献   
89.
GPER/GPR30 is a seven-transmembrane G protein-coupled estrogen receptor that regulates many aspects of mammalian biology and physiology. We have previously described both a GPER-selective agonist G-1 and antagonist G15 based on a tetrahydro-3H-cyclopenta[c]quinoline scaffold. The antagonist lacks an ethanone moiety that likely forms important hydrogen bonds involved in receptor activation. Computational docking studies suggested that the lack of the ethanone substituent in G15 could minimize key steric conflicts, present in G-1, that limit binding within the ERα ligand binding pocket. In this report, we identify low-affinity cross-reactivity of the GPER antagonist G15 to the classical estrogen receptor ERα. To generate an antagonist with enhanced selectivity, we therefore synthesized an isosteric G-1 derivative, G36, containing an isopropyl moiety in place of the ethanone moiety. We demonstrate that G36 shows decreased binding and activation of ERα, while maintaining its antagonist profile towards GPER. G36 selectively inhibits estrogen-mediated activation of PI3K by GPER but not ERα. It also inhibits estrogen- and G-1-mediated calcium mobilization as well as ERK1/2 activation, with no effect on EGF-mediated ERK1/2 activation. Similar to G15, G36 inhibits estrogen- and G-1-stimulated proliferation of uterine epithelial cells in vivo. The identification of G36 as a GPER antagonist with improved ER counterselectivity represents a significant step towards the development of new highly selective therapeutics for cancer and other diseases.  相似文献   
90.
Adoptive immunotherapy using TCR-engineered PBLs against melanocyte differentiation Ags mediates objective tumor regression but is associated with on-target toxicity. To avoid toxicity to normal tissues, we targeted cancer testis Ag (CTA) MAGE-A3, which is widely expressed in a range of epithelial malignancies but is not expressed in most normal tissues. To generate high-avidity TCRs against MAGE-A3, we employed a transgenic mouse model that expresses the human HLA-A*0201 molecule. Mice were immunized with two HLA-A*0201-restricted peptides of MAGE-A3: 112-120 (KVAELVHFL) or MAGE-A3: 271-279 (FLWGPRALV), and T cell clones were generated. MAGE-A3-specific TCR α- and β-chains were isolated and cloned into a retroviral vector. Expression of both TCRs in human PBLs demonstrated Ag-specific reactivity against a range of melanoma and nonmelanoma tumor cells. The TCR against MAGE-A3: 112-120 was selected for further development based on superior reactivity against tumor target cells. Interestingly, peptide epitopes from MAGE-A3 and MAGE-A12 (and to a lesser extent, peptides from MAGE-A2 and MAGE-A6) were recognized by PBLs engineered to express this TCR. To further improve TCR function, single amino acid variants of the CDR3 α-chain were generated. Substitution of alanine to threonine at position 118 of the α-chain in the CDR3 region of the TCR improved its functional avidity in CD4 and CD8 cells. On the basis of these results, a clinical trial is planned in which patients bearing a variety of tumor histologies will receive autologous PBLs that have been transduced with this optimized anti-MAGE-A3 TCR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号