首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   21篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   2篇
  2008年   8篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   6篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1985年   1篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1975年   3篇
  1973年   1篇
  1971年   1篇
  1967年   2篇
  1966年   3篇
  1954年   1篇
排序方式: 共有143条查询结果,搜索用时 421 毫秒
1.
2.
3.
Chicken breast muscle has three Ca2+-dependent proteinases, two requiring millimolar Ca2+ (m-calpain and high m-calpain) and one requiring micromolar Ca2+ (mu-calpain). High m-calpain co-purifies with mu-calpain through successive DEAE-cellulose (steep gradient), phenyl-Sepharose, octylamine agarose, and Sephacryl S-300 columns, but elutes after mu-calpain when using a shallow KCl gradient to elute a DEAE-cellulose column. The mu- and m-calpains have 80 and 28 kDa polypeptides and are analogous to the mu- and m-calpains that have been purified from bovine, porcine and rabbit skeletal muscle. High m-calpain, which seems to be a new Ca2+-dependent proteinase, is still heterogeneous after the DEAE-cellulose column eluted with a shallow KCl gradient. Additional purification through two successive HPLC-DEAE columns and one HPLC-SW-4000 gel permeation column produces a fraction having six major polypeptides and 6-8 minor polypeptides on SDS-PAGE. A 74-76 kDa polypeptide in this fraction reacts in Western blots with monospecific, polyclonal anti-calpain antibodies that react with both the 80 kDa and the 28 kDa polypeptides of mu- or m-calpain. High m-calpain also is related to mu- and m-calpain in that it causes the same limited digestion of skeletal muscle myofibrils, has a similar pH optimum near pH 7.9-8.4, requires Ca2+ for activity, and reacts with the calpain inhibitor, calpastatin, and a variety of serine and cysteine proteinase inhibitors in a manner identical to mu- and m-calpain. High m-calpain differs from mu- and m-calpain in its elution off DEAE-cellulose columns and its requirement of 3800 microM Ca2+ for one-half maximal activity compared with 5.35 microM Ca2+ for mu-calpain and 420 microM Ca2+ for m-calpain. The physiological significance of high m-calpain in unclear. The presence of mu-calpain in chicken breast muscle suggests that all skeletal muscles contain both mu- and m-calpain, although the relative proportions of these two proteinases may vary in different species.  相似文献   
4.
5.
6.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   
7.
Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.  相似文献   
8.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
9.
Human interleukin-1 beta (IL-1 beta) is expressed in activated monocytes as a 31-kDa precursor protein which is processed and secreted as a mature, unglycosylated 17-kDa carboxyl-terminal fragment, despite the fact that it contains a potential N-linked glycosylation site near the NH2 terminus (-Asn7-Cys8-Thr9-). cDNA coding for authentic mature IL-1 beta was fused to the signal sequence from the Candida albicans glucoamylase gene, two amino acids downstream from the signal processing site. Upon expression in Saccharomyces cerevisiae, approximately equimolar amounts of N-glycosylated (22 kDa) and unglycosylated (17 kDa) IL-1 beta protein were secreted. The N-glycosylated yeast recombinant IL-1 beta exhibited a 5-7-fold lower specific activity compared to the unglycosylated species. The mechanism responsible for inefficient glycosylation was also studied. We found no differences in secretion kinetics or processing between the two extracellular forms of IL-1 beta. The 17-kDa protein, which was found to lack core sugars, does not result from deglycosylation of the 22-kDa protein in vivo and does not result from saturation of the glycosylation enzymatic machinery through overexpression. Alteration of the uncommon Cys8 residue in the -Asn-X-Ser/Thr-glycosylation site to Ser also had no effect. However, increasing the distance between Asn7 and the signal processing site increased the extent of core N-linked glycosylation, suggesting a reduction in glycosylation efficiency near the NH2 terminus.  相似文献   
10.
ATP citrate-lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. We have isolated a full-length cDNA copy of 4.3 kilobase pairs encoding the ATP-citrate lyase mRNA by screening rat liver cDNA library using oligonucleotide probes designed from peptide sequences obtained from the purified rat enzyme. Expression of this cDNA in bacteria, followed by immunoblotting with antibody directed against the ATP citrate-lyase, further demonstrated the identity of this clone. Nucleic acid sequence data indicate that the cDNA contains the complete coding region for the enzyme, which is 1100 amino acids in length with a calculated molecular weight of 121,293. RNA blot analysis indicated an mRNA species of about 4.3 kilobase pairs in livers of chow-fed rats. Rats maintained on low fat, high carbohydrate diets exhibited a striking increase (50-fold) in the level of liver ATP citrate-lyase mRNA as compared with the control animals maintained on a normal diet. The tissue distribution of this mRNA in chow-fed animals revealed a relatively high abundance of the message in liver and adrenal, moderate levels were found in lung, brain, and large intestine with only trace amounts of the message in small intestine, stomach, testis, spleen, pancreas, kidney, and heart. During rat development, the ATP citrate-lyase mRNA was relatively high in the liver at parturition, followed by a reduction in its level during suckling. Higher amounts of the mRNA were detected again in adult animals. The isolation and characterization of the mRNA for ATP citrate-lyase will allow further studies on the reaction mechanism and metabolic regulation of this key enzyme in lipogenesis and cholesterogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号