首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   10篇
  2020年   6篇
  2018年   2篇
  2016年   3篇
  2015年   7篇
  2014年   5篇
  2013年   4篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   8篇
  2008年   3篇
  2007年   4篇
  2005年   2篇
  2004年   3篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1989年   2篇
  1987年   2篇
  1986年   4篇
  1984年   2篇
  1977年   2篇
  1973年   2篇
  1972年   7篇
  1970年   3篇
  1960年   4篇
  1959年   2篇
  1957年   2篇
  1953年   3篇
  1947年   2篇
  1940年   2篇
  1938年   4篇
  1937年   2篇
  1936年   9篇
  1935年   5篇
  1934年   2篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1930年   2篇
  1929年   7篇
  1924年   2篇
  1923年   3篇
  1920年   2篇
  1918年   3篇
  1910年   2篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
51.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   
52.
This study shows that the Vibrio cholerae RTX toxin is secreted by a four-component type I secretion system (TISS) encoded by rtxB, rtxD, rtxE, and tolC. ATP-binding site mutations in both RtxB and RtxE blocked secretion, demonstrating that this atypical TISS requires two transport ATPases that may function as a heterodimer.  相似文献   
53.
Paneth cells secrete alpha-defensins into the lumen from the base of small intestinal crypts, and cryptdin-4 (Crp4) is the most potent mouse alpha-defensin in vitro. Purified recombinant Crp4 and Crp4 variants with (des-Gly)-, (Gly1Val)-, (Gly1Asp)-, and (Gly1Arg)-substitutions were all bactericidal with Crp4 and (Gly1Arg)-Crp4 being slightly more active than other variants. Bactericidal activities correlated directly with permeabilization of live Escherichia coli, with equilibrium binding to E. coli membrane phospholipid bilayers and vesicles, and with induced graded fluorophore leakage from phospholipid vesicles. The Crp4 peptide N-terminus affects bactericidal activity modestly, apparently by influencing peptide binding to phospholipid bilayers and subsequent permeabilization of target cell membranes.  相似文献   
54.
The bactericidal activity of mouse alpha-defensins (cryptdins) requires proteolytic activation of inactive precursors by matrix metalloproteinase-7 (matrilysin, EC, MMP-7(a)). To investigate mechanisms of cryptdin-4 (Crp4) peptide interactions with membrane bilayers and to determine whether MMP-7-mediated proteolysis activates the membrane disruptive activity of Crp4, associations of Crp4 and melittin with biomimetic lipid/polydiacetylene chromatic vesicles were characterized. The peptides differ in their sensitivity to vesicle lipid composition and their depth of bilayer penetration. Crp4 undergoes strong interfacial binding onto lipid bilayers with disruption of the bilayer head group region, unlike melittin, which inserts more deeply into the hydrophobic core of the bilayer. Colorimetric and tryptophan fluorescence studies showed that Crp4 insertion is favored by negatively charged phospholipids and that zwitterionic and Escherichia coli phospholipids promote stronger interfacial binding; melittin-membrane interactions were independent of either variable. In contrast to the membrane disruptive activity of Crp4, pro-Crp4 did not perturb vesicular membranes, consistent with the lack of bactericidal activity of the precursor, and incubation of Crp4 with prosegment in trans blocked Crp4 and G1W-Crp4 membrane interactions at concentrations that inhibit Crp4 bactericidal activity. CD measurements showed that Crp4 has an expected beta-sheet structure that is not evident in the pro-Crp4 CD trace or when Crp4 is incubated with prosegment, indicating that the beta-sheet signal is attenuated by proregion interactions or possibly disrupted by the prosegment. Collectively, the results suggest that the prosegment inhibits Crp4 bactericidal activity by blocking peptide-mediated perturbation of target cell membranes, a constraint that is relieved when MMP-7 cleaves the prosegment.  相似文献   
55.
The medullary bone serves as a source of labile calcium mobilized during calcification of the egg shell in birds. Quantitative histological methods demonstrate that the numbers of medullary bone osteoclasts and nuclei per osteoclast remain unchanged during the egg cycle in the Japanese quail (Coturnix). Therefore, cyclic changes in bone resorption cannot be explained by modulations of osteoclasts from and into other bone cells, a mechanism previously suggested for certain species of birds. Rather, dramatic changes in osteoclast cell-surface features occur during the egg cycle, which might account for cyclic variations in resorptive activity. During egg shell calcification, osteoclasts with ruffled borders are closely apposed to bone surfaces; the cytoplasm is rich in vacuoles that contain mineral crystals and seem to derive from the ruffled border. At the completion of egg shell calcification, the ruffled borders and vacuoles move away from the bone surface, although the osteoclast remains attached to the bone along the filamentous or "clear" zone. Associated with the disappearance of the ruffled borders is the appearance of extensive interdigitated cell processes along the peripheral surface of the osteoclast away from the bone. These unusual structures, which may serve as a reservoir of membrane, largely disappear when ruffled borders and associated structures reappear. Therefore, in these hens, the osteoclasts modulate their cell surface rather than their population during the egg cycle.  相似文献   
56.
Paneth cells at the base of small intestinal crypts secrete apical granules that contain antimicrobial peptides including alpha-defensins, termed cryptdins. Using an antibody specific for mouse cryptdin-1, -2, -3, and -6, immunogold-localization studies demonstrated that cryptdins are constituents of mouse Paneth cell secretory granules. Several cryptdin peptides have been purified from rinses of adult mouse small intestine by gel filtration and reverse-phase high performance liquid chromatography. Their primary structures were determined by peptide sequencing, and their antimicrobial activities were compared with those of the corresponding tissue forms. The isolated luminal cryptdins included peptides identical to the tissue forms of cryptdin-2, -4, and -6 as well as variants of cryptdin-1, -4, and -6 that have N termini truncated by one or two residues. In assays of antimicrobial activity against Staphylococcus aureus, Escherichia coli, and the defensin-sensitive Salmonella typhimurium phoP(-) mutant, full-length cryptdins had the same in vitro antibacterial activities whether isolated from tissue or from the lumen. In contrast, the N-terminal-truncated (des-Leu), (des-Leu-Arg)-cryptdin-6, and (des-Gly)-cryptdin-4 peptides were markedly less active. The microbicidal activities of recombinant cryptdin-4 and (des-Gly)-cryptdin-4 peptides against E. coli, and S. typhimurium showed that the N-terminal Gly residue or the length of the cryptdin-4 N terminus are determinants of microbicidal activity. Innate immunity in the crypt lumen may be modulated by aminopeptidase modification of alpha-defensins after peptide secretion.  相似文献   
57.
1H, 13C, and 15N chemical shift assignments are presented for the isolated four-helical bundle membrane localization domain from the domain of unknown function 5 (DUF5) effector (MLDVvDUF5) of the MARTX toxin from Vibrio vulnificus in its solution state. We have assigned 97 % of all backbone and side-chain carbon atoms, including 96 % of all backbone residues. Secondary chemical shift analysis using TALOS+ demonstrates four helices that align with those predicted by structure homology modeling using the MLDs of Pasteurella multocida toxin (PMT) and the clostridial TcdB and TcsL toxins as templates. Future studies will be towards solving the structure and determining the dynamics in the solution state.  相似文献   
58.

Introduction

In anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides (AAV), persistent inflammation within the vessel wall suggests perturbed neutrophil trafficking leading to accumulation of activated neutrophils in the microvascular compartment. CXCR1 and CXCR2, being major chemokine receptors on neutrophils, are largely responsible for neutrophil recruitment. We speculate that down-regulated expression of CXCR1/2 retains neutrophils within the vessel wall and, consequently, leads to vessel damage.

Methods

Membrane expression of CXCR1/2 on neutrophils was assessed by flow cytometry. Serum levels of interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), angiopoietin 1 and angiopoietin 2 from quiescent and active AAV patients and healthy controls (HC) were quantified by ELISA. Adhesion and transendothelial migration of isolated neutrophils were analyzed using adhesion assays and Transwell systems, respectively.

Results

Expression of CXCR1 and CXCR2 on neutrophils was significantly decreased in AAV patients compared to HC. Levels of IL-8, which, as TNFα, dose-dependently down-regulated CXCR1 and CXCR2 expression on neutrophils in vitro, were significantly increased in the serum of patients with active AAV and correlated negatively with CXCR1/CXCR2 expression on neutrophils, even in quiescent patients. Blocking CXCR1 and CXCR2 with repertaxin increased neutrophil adhesion and inhibited migration through a glomerular endothelial cell layer.

Conclusions

Expression of CXCR1 and CXCR2 is decreased in AAV, potentially induced by circulating proinflammatory cytokines such as IL-8. Down-regulation of these chemokine receptors could increase neutrophil adhesion and impair its migration through the glomerular endothelium, contributing to neutrophil accumulation and, in concert with ANCA, persistent inflammation within the vessel wall.  相似文献   
59.

Background

ADAMTS13 is the physiological von Willebrand factor (VWF)-cleaving protease. The aim of this study was to examine ADAMTS13 expression in kidneys from ADAMTS13 wild-type (Adamts13+/+) and deficient (Adamts13−/−) mice and to investigate the expression pattern and bioactivity in human glomerular endothelial cells.

Methodology/Principal Findings

Immunohistochemistry was performed on kidney sections from ADAMTS13 wild-type and ADAMTS13-deficient mice. Phenotypic differences were examined by ultramorphology. ADAMTS13 expression in human glomerular endothelial cells and dermal microvascular endothelial cells was investigated by real-time PCR, flow cytometry, immunofluorescence and immunoblotting. VWF cleavage was demonstrated by multimer structure analysis and immunoblotting. ADAMTS13 was demonstrated in glomerular endothelial cells in Adamts13+/+ mice but no staining was visible in tissue from Adamts13−/− mice. Thickening of glomerular capillaries with platelet deposition on the vessel wall was detected in Adamts13−/− mice. ADAMTS13 mRNA and protein were detected in both human endothelial cells and the protease was secreted. ADAMTS13 activity was demonstrated in glomerular endothelial cells as cleavage of VWF.

Conclusions/Significance

Glomerular endothelial cells express and secrete ADAMTS13. The proteolytic activity could have a protective effect preventing deposition of platelets along capillary lumina under the conditions of high shear stress present in glomerular capillaries.  相似文献   
60.
Intimate interactions between the armament of pathogens and their host dictate tissue and host susceptibility to infection also forging specific pathophysiological outcomes. Studying these interactions at the molecular level has provided an invaluable source of knowledge on cellular processes, as ambitioned by the Cellular Microbiology discipline when it emerged in early 90s. Bacterial toxins act on key cell regulators or membranes to produce major diseases and therefore constitute a remarkable toolbox for dissecting basic biological processes. Here, we review selected examples of recent studies on bacterial toxins illustrating how fruitful the discipline of cellular microbiology is in shaping our understanding of eukaryote processes. This ever‐renewing discipline unveils new virulence factor biochemical activities shared by eukaryotic enzymes and hidden rules of cell proteome homeostasis, a particularly promising field to interrogate the impact of proteostasis breaching in late onset human diseases. It is integrating new concepts from the physics of soft matter to capture biomechanical determinants forging cells and tissues architecture. The success of this discipline is also grounded by the development of therapeutic tools and new strategies to treat both infectious and noncommunicable human diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号