首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   12篇
  2022年   3篇
  2021年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1983年   3篇
  1981年   1篇
  1977年   3篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
31.
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.  相似文献   
32.
The hypolipidaemic agents ciprofibrate and Wy-14,643 ([4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid) and the phthalate-ester plasticizer di-(2-ethylhexyl)-phthalate (DEHP), like other peroxisome proliferators, produce a significant hepatomegaly and induce the peroxisomal fatty acid beta-oxidation enzyme system together with profound proliferation of peroxisomes in hepatic parenchymal cells. Changes in the profile of liver proteins in rats following induction of peroxisome proliferation by ciprofibrate, Wy-14,643 and DEHP have been analysed by high-resolution two-dimensional gel electrophoresis. The proteins of whole liver homogenates from normal and peroxisome-proliferator-treated rats were separated by two-dimensional gel electrophoresis using isoelectric focusing for acidic proteins and nonequilibrium pH gradient electrophoresis for basic proteins. In the whole liver homogenates, the quantities of six proteins in acidic gels and six proteins in the basic gels increased following induction of peroxisome proliferation. Peroxisome proliferator administration caused a repression of three acidic proteins in the liver homogenates. By the immunoblot method using polyspecific antiserum against soluble peroxisomal proteins and monospecific antiserum against peroxisome proliferation associated Mr 80000 polypeptide (polypeptide PPA-80), the majority of basic proteins induced by these peroxisome proliferators appeared to be peroxisomal proteins. Polypeptide PPA-80 becomes the most abundant protein in the total liver homogenates of peroxisome-proliferator-treated rats. These results indicate that ciprofibrate, DEHP and Wy-14,643 induce marked changes in the profile of specific hepatic proteins and that some of these changes should serve as a baseline to identify a set of gene products that may assist in defining the specific 'peroxisome proliferator domain'.  相似文献   
33.
Extensive peroxisomal proliferation in the hepatic parenchymal cells was observed when male rats were given a diet containing 0.1% Wy-14,643 [( 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid), a potent lipid-decreasing drug. This drug also caused a marked increase in the concentrations of the mRNA species coding for four proteins with Mr 77000, 61000, 43000 and 31000, and a similar decrease in the concentrations of three mRNA species coding for proteins of Mr 25000, 24000 and 19000. Specific immunoprecipitation studies identified the proteins of Mr 19000, 43000 and 77000 as alpha 2u-globulin, 3-ketoacyl-CoA thiolase (EC 2.3.1.16) and enoyl-CoA hydratase (EC 4.2.1.17) respectively. Comparisons of the Mr values suggest that the 61000- and 31000-Mr proteins may be equivalent to two additional peroxisomal enzymes, namely catalase (Mr 61000) and uricase (Mr 31000). The identity of the mRNA species coding for the 25000- and 24000-Mr proteins is at present unknown.  相似文献   
34.
Lactating rats were administered by gavage 100 mg/kg body wt. twice a day of either nafenopin or Wy-14,643, two hypolipidaemic drugs with hepatic peroxisome proliferative property. Neonatal rats, after feeding from the drug-treated mothers for 8-14 days, showed sustained increases in both the proliferation of hepatic peroxisomes, as well as in levels of the peroxisome-associated enzymes catalase (3-fold), carnitine acetyltransferase (15-35-fold), peroxisomal enoyl-CoA hydratase (29-46-fold), and palmitoyl-CoA oxidation (12-14-fold). These increases in enzyme activities in suckling rats were similar to those seen in the livers of the drug-treated, lactating mothers after 14 days of treatment. After administering [3H]nafenopin or [3H]Wy-14,643 to lactating rats, significant levels of drug-derived radioactivity were observed in suckling rat gastric milk curds by 2-4 h with significant radioactivity seen in suckling rat livers by 4-6 h. T.l.c. analysis of organic extracts of milk samples from [3H]Wy-14,643 treated animals indicated no detectable levels of the parent drug, only more-polar metabolites. Wy-14,643 metabolites preparatively purified from a rat liver microsomal fraction incubation induced peroxisome proliferation when injected into a neonatal rat. Preparative high pressure liquid chromatography purification and mass spectral analysis has allowed preliminary assessment of the structures of the Wy-14,643 microsomal metabolites. It is concluded that one or more of the metabolite fractions of Wy-14,643 transferred in milk exert the biological ability to induce peroxisome proliferation and peroxisomal enzymes in neonatal livers.  相似文献   
35.
The metabolism of phosphatidylinositol was studied in normal quiescent hepatocytes, hepatocellular carcinomas induced by single dose of diethylnitrosamine, followed by 2-acetylaminofluorene and partial hepatectomy (Solt-Farber model), and in an established hepatoma cell line, JB1. The JB1 hepatoma cell line and hepatocellular carcinomas demonstrated a 4- to 5-fold higher rate of turnover of [3H]-inositol and [3H]-glycerol than the control hepatocytes. Significantly, elevated levels of second messengers inositol 1,4,5-trisphosphate and sn-1,2-diacylglycerol were noted in hepatic tumor cells within 4 hr of labeling with precursor molecules, whereas no detectable level of 3H-labeled inositol trisphosphate was noted in quiescent hepatocytes, even after incubation with 10 mM LiCl for 30 min. Approximately 2.5-fold higher specific activities of a guanine nucleotide and Ca+2 dependent phosphatidylinositol 4,5-bisphosphate specific phospholipase C were detected in the hepatocellular carcinoma cells. The cellular location of the phospholipase C activity was also different, being membrane bound in hepatocytes and equally distributed between cytosolic and membrane factions in the hepatomas. These data are consistent with the hypothesis that the enhanced production of diacylglycerol and inositol 1,4,5-trisphosphate in hepatocellular carcinomas may be due to the activation of a guanine nucleotide dependent phosphatidylinositol 4,5-bisphosphate specific phospholipase C. These data are the first to compare phosphoinositide turnover in normal liver and hepatic tumor cells and suggest that the sustained levels of second messengers is closely associated with the transformation and enhanced growth rate in hepatic tumor cells.  相似文献   
36.
The hypolipidaemic drugs methyl clofenapate, BR-931, Wy-14643 and procetofen induced a marked proliferation of peroxisomes in the parenchymal cells of liver and the proximal-convoluted-tubular epithelium of mouse kidney. The proliferation of peroxisomes was associated with 6–12-fold increase in the peroxisomal palmitoyl-CoA oxidizing capacity of the mouse liver. Enhanced activity of the peroxisomal palmitoyl-CoA oxidation system was also found in the renal-cortical homogenates of hypolipidaemic-drug-treated mice. The activity of enoyl-CoA hydratase in the mouse liver increased 30–50-fold and in the kidney cortex 3–5-fold with hypolipidaemic-drug-induced peroxisome proliferation in these tissues, and over 95% of this induced activity was found to be heat-labile peroxisomal enzyme in both organs. Sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis of large-particle and microsomal fractions obtained from the liver and kidney cortex of mice treated with hypolipidaemic peroxisome proliferators demonstrated a substantial increase in the quantity of an 80000-mol.wt. peroxisome-proliferation-associated polypeptide (polypeptide PPA-80). The heat-labile peroxisomal enoyl-CoA hydratase was purified from the livers of mice treated with the hypolipidaemic drug methyl clofenapate; the antibodies raised against this electrophoretically homogeneous protein yielded a single immunoprecipitin band with purified mouse liver enoyl-CoA hydratase and with liver and kidney cortical extracts of normal and hypolipidaemic-drug-treated mice. These anti-(mouse liver enoyl-CoA hydratase) antibodies also cross-reacted with purified rat liver enoyl-CoA hydratase and with the polypeptide PPA-80 obtained from rat and mouse liver. Immunofluorescence studies with anti-(polypeptide PPA-80) and anti-(peroxisomal enoyl-CoA hydratase) provided visual evidence for the localization and induction of polypeptide PPA-80 and peroxisomal enoyl-CoA hydratase in the liver and kidney respectively of normal and hypolipidaemic-drug-treated mice. In the kidney, the distribution of these two proteins is identical and limited exclusively to the cytoplasm of proximal-convoluted-tubular epithelium. The immunofluorescence studies clearly complement the biochemical and ultrastructural observations of peroxisome induction in the liver and kidney cortex of mice fed on hypolipidaemic drugs. In addition, preliminary ultrastructural studies with the protein-A–gold-complex technique demonstrate that the heat-labile hepatic enoyl-CoA hydratase is localized in the peroxisome matrix.  相似文献   
37.
The aim of the present study was to investigate bromodeoxyuridine (BrdU) uptake and coordinated distribution of proliferating cell nuclear antigen (PCNA) and p34-cdc2-kinase, two important proteins involved in cell cycle regulation and progression. Flow cytometric analysis of marker proteins in freshly plated mouse T-lymphoma cells (Yac-1 cells), using fluorescein isothiocyanate (FITC)-labeled specific antibodies, showed PCNA distributed throughout the cell cycle with increased intensity in S-phase. PCNA is essential for cells to cycle through S-phase and its synthesis is initiated during late G1-phase before incorporation of BrdU and remains high during active DNA replication. The intensity of PCNA fluorescence increases with the duration of incubation after plating. The cdc2-kinase was detectable in all phases of the cell cycle and the G2-M-phase appears to have the maximum concentrations. The cell cycle analysis of high dose colcemid (2 μg/ml) treated Yac-1 cells showed an aneuploid or hypodiploid population. Although the G2-M-phase seems to be the dominating population in aneuploid cells, the concentrations of cdc2-kinase were variable in this phase of cell cycle. The colcemid treatment at 25 ng/ml arrested 96% of cells in S-phase and G2-M-phase, but PCNA expression was evident in a portion of the cell population in G2-M-phase. Although cells blocked in M-phase seem to have high levels of cdc2-kinase, colcemid renders them inactive. From these data, it appears that the down regulation and/or inactivation of cdc2-kinase could be responsible for the colcemid arrest of cells in M-phase.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号