首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656篇
  免费   53篇
  国内免费   1篇
  710篇
  2023年   5篇
  2022年   10篇
  2021年   32篇
  2020年   11篇
  2019年   14篇
  2018年   15篇
  2017年   12篇
  2016年   24篇
  2015年   41篇
  2014年   44篇
  2013年   66篇
  2012年   70篇
  2011年   53篇
  2010年   34篇
  2009年   27篇
  2008年   32篇
  2007年   38篇
  2006年   36篇
  2005年   31篇
  2004年   17篇
  2003年   24篇
  2002年   18篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   11篇
  1992年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有710条查询结果,搜索用时 0 毫秒
131.
Four sites located in the north-eastern region of the United States of America have been chosen to investigate the impacts of soil heterogeneity in the transport of solutes (bromide and chloride) through the vadose zone (the zone in the soil that lies below the root zone and above the permanent saturated groundwater). A recently proposed mathematical model based on the cumulative beta distribution has been deployed to compare and contrast the regions' heterogeneity from multiple sample percolation experiments. Significant differences in patterns of solute leaching were observed even over a small spatial scale, indicating that traditional sampling methods for solute transport, for example the gravity pan or suction lysimeters, or more recent inventions such as the multiple sample percolation systems may not be effective in estimating solute fluxes in soils when a significant degree of soil heterogeneity is present. Consequently, ignoring soil heterogeneity in solute transport studies will likely result in under- or overprediction of leached fluxes and potentially lead to serious pollution of soils and/or groundwater.The cumulative beta distribution technique is found to be a versatile and simple technique of gaining valuable information regarding soil heterogeneity effects on solute transport. It is also an excellent tool for guiding future decisions of experimental designs particularly in regard to the number of samples within one site and the number of sampling locations between sites required to obtain a representative estimate of field solute or drainage flux.  相似文献   
132.
133.
Abstract: To investigate whether polymorphic forms of the human dopamine D4 receptor have different functional characteristics, we have stably expressed cDNAs of the D4.2, D4.4, and D4.7 isoforms in several cell lines. Chinese hamster ovary CHO-K1 cell lines expressing D4 receptor variants displayed pharmacological profiles that were in close agreement with previous data from transiently expressed D4 receptors in COS-7 cells. Dopamine stimulation of the D4 receptors resulted in a concentration-dependent inhibition of the forskolin-stimulated cyclic AMP (cAMP) levels. The potency of dopamine to inhibit cAMP formation was about twofold reduced for D4.7 (EC50 of ∼37 n M ) compared with the D4.2 and D4.4 variants (EC50 of ∼16 n M ). Antagonists block the dopamine-mediated inhibition of cAMP formation with a rank order of potency of emonapride > haloperidol = clozapine ≫ raclopride. There was no obvious correlation between the efficacy of inhibition of forskolin-stimulated cAMP levels and the D4 subtypes. Dopamine could completely reverse prostaglandin E2-stimulated cAMP levels for all three D4 receptor variants. Deletion of the repeat sequence does not affect functional activity of the receptor. The data presented indicate that the polymorphic repeat sequence causes only small changes in the ability of the D4 receptor to block cAMP production in CHO cells.  相似文献   
134.
The signal recognition particle (SRP) directs ribosome-nascent chain complexes (RNCs) displaying signal sequences to protein translocation channels in the plasma membrane of prokaryotes and endoplasmic reticulum of eukaryotes. It was initially proposed that SRP binds the signal sequence when it emerges from an RNC and that successful binding becomes impaired as translation extends the nascent chain, moving the signal sequence away from SRP on the ribosomal surface. Later studies drew this simple model into question, proposing that SRP binding is unaffected by nascent chain length. Here, we reinvestigate this issue using two novel and independent fluorescence resonance energy transfer assays. We show that the arrival and dissociation rates of SRP binding to RNCs vary according to nascent chain length, resulting in the highest affinity shortly after a functional signal sequence emerges from the ribosome. Moreover, we show that SRP binds RNCs in multiple and interconverting conformations, and that conversely, RNCs exist in two conformations distinguished by SRP interaction kinetics.  相似文献   
135.
Enrichment cultures with enantiomeric 2-(4-sulfophenyl)butyrate (SPB) as the sole added source(s) of carbon and energy for growth yielded a pure culture of a degradative bacterium, which was identified as Delftia acidovorans SPB1. The organism utilized the enantiomers sequentially. R-SPB was utilized first (specific growth rate [μ] = 0.28 h−1), with transient excretion of an unknown intermediate, which was identified as 4-sulfocatechol (4SC). Utilization of S-SPB was slower (μ = 0.016 h−1) and was initiated only after the first enantiomer was exhausted. Suspensions of cells grown in S-SPB excreted 4SC, so metabolism of the two enantiomers converged at 4SC. The latter was degraded by ortho cleavage via 3-sulfo-cis,cis-muconate. Strain SPB1 grew with 4SC and with 1-(4-sulfophenyl)octane (referred to herein as model LAS) but not with commercial linear alkylbenzenesulfonate (LAS) surfactant, which is subterminally substituted but nontoxic. It would appear that metabolism of the model LAS does not represent metabolism of commercial LAS.  相似文献   
136.
The adaptor protein Lnk is expressed in haemopoietic cells and plays a critical role in haemopoiesis. Animal model studies demonstrated that Lnk acts as a broad inhibitor of signalling pathways in haemopoietic lineages. Lnk belongs to a family of proteins sharing several structural motifs, including an SH2 (Src homology 2) domain which binds phosphotyrosine residues in various signal-transducing proteins. The SH2 domain is essential for Lnk-mediated negative regulation of several cytokine receptors [e.g. Mpl, EpoR (erythropoietin receptor), c-Kit]. Therefore inhibition of the binding of Lnk to cytokine receptors might lead to enhanced downstream signalling of the receptor and thereby to improved haemopoiesis in response to exposure to cytokines (e.g. erythropoietin in anaemic patients). This hypothesis led us to define the exact binding site of Lnk to the stem cell factor receptor c-Kit. Pull-down experiments using GST (glutathione transferase)-fusion proteins of the different domains of c-Kit showed that Lnk almost exclusively binds to the phosphorylated juxtamembrane domain. Binding of Lnk to the juxtamembrane domain was abolished by point mutation of Tyr(568) and was competed by peptides with a phosphotyrosine residue at position 568. Co-immunoprecipitation with full-length wild-type or Y568F mutant c-Kit and Lnk confirmed these results, thus showing the importance of this phosphorylated tyrosine residue. Lnk bound directly to c-Kit without requiring other interacting partners. The identification of the binding site of Lnk to c-Kit will be useful to discover inhibitory molecules that prevent the binding of these two proteins, thus making haemopoietic cells more sensitive to growth factors.  相似文献   
137.
The full-length proviral genome of a foamy virus infecting a Bornean orangutan was amplified, and its sequence was analyzed. Although the genome showed a clear resemblance to other published foamy virus genomes from apes and monkeys, phylogenetic analysis revealed that simian foamy virus SFVora was evolutionarily equidistant from foamy viruses from other hominoids and from those from Old World monkeys. This finding suggests an independent evolution within its host over a long period of time.  相似文献   
138.

Background

Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial and sporadic Parkinson''s disease. The multidomain protein LRRK2 exhibits overall low GTPase and kinase activity in vitro.

Methodology/Principal Findings

Here, we show that the rho guanine nucleotide exchange factor ARHGEF7 and the small GTPase CDC42 are interacting with LRRK2 in vitro and in vivo. GTPase activity of full-length LRRK2 increases in the presence of recombinant ARHGEF7. Interestingly, LRRK2 phosphorylates ARHGEF7 in vitro at previously unknown phosphorylation sites. We provide evidence that ARHGEF7 might act as a guanine nucleotide exchange factor for LRRK2 and that R1441C mutant LRRK2 with reduced GTP hydrolysis activity also shows reduced binding to ARHGEF7.

Conclusions/Significance

Downstream effects of phosphorylation of ARHGEF7 through LRRK2 could be (i) a feedback control mechanism for LRRK2 activity as well as (ii) an impact of LRRK2 on actin cytoskeleton regulation. A newly identified familial mutation N1437S, localized within the GTPase domain of LRRK2, further underlines the importance of the GTPase domain of LRRK2 in Parkinson''s disease pathogenesis.  相似文献   
139.
Since proteins play crucial roles in all biological processes, the finely tuned equilibrium between their synthesis and degradation regulates cellular homeostasis. Controlling the quality of proteome informational content is essential for cell survival and function. After initial synthesis, membrane and secretory proteins are modified, folded, and assembled in the endoplasmic reticulum, whereas other proteins are synthesized and processed in the cytosol. Cells have different protein quality control systems, the molecular chaperones, which help protein folding and stabilization, and the ubiquitin-proteasome system (UPS) and lysosomes, which degrade proteins. It has generally been assumed that UPS and lysosomes are regulated independently and serve distinct functions. The UPS degrades both cytosolic, nuclear proteins, and myofibrillar proteins, whereas the lysosomes degrade most membrane and extracellular proteins by endocytosis as well as cytosolic proteins and organelles via autophagy. Over the last two decades, the UPS has been increasingly recognized as a major system in several biological processes including cell proliferation, adaptation to stress and cell death. More recently, activation or impairment of the UPS has been reported in cardiac disease and recent evidence indicate that autophagy is a key mechanism to maintain cardiac structure and function. This review mainly focuses on the UPS and its various components in healthy and diseased heart, but also summarizes recent data suggesting parallel activation of the UPS and autophagy in cardiac disease.  相似文献   
140.
Several marine ecosystems under anthropogenic pressure have experienced shifts from one ecological state to another. In the central Baltic Sea, the regime shift of the 1980s has been associated with food-web reorganization and redirection of energy flow pathways. These long-term dynamics from 1974 to 2006 have been simulated here using a food-web model forced by climate and fishing. Ecological network analysis was performed to calculate indices of ecosystem change. The model replicated the regime shift. The analyses of indicators suggested that the system’s resilience was higher prior to 1988 and lower thereafter. The ecosystem topology also changed from a web-like structure to a linearized food-web.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号