首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   27篇
  408篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   12篇
  2019年   7篇
  2018年   15篇
  2017年   12篇
  2016年   17篇
  2015年   22篇
  2014年   19篇
  2013年   30篇
  2012年   36篇
  2011年   19篇
  2010年   17篇
  2009年   13篇
  2008年   20篇
  2007年   24篇
  2006年   9篇
  2005年   10篇
  2004年   15篇
  2003年   14篇
  2002年   12篇
  2001年   7篇
  1999年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   3篇
  1971年   1篇
  1970年   4篇
  1969年   4篇
  1968年   1篇
  1966年   1篇
  1965年   3篇
  1964年   2篇
  1963年   1篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
71.
Previously, we demonstrated that Pseudomonas aeruginosa ExoT induces potent apoptosis in host epithelial cells in a manner that primarily depends on its ADP-ribosyltransferase domain (ADPRT) activity. However, the mechanism underlying ExoT/ADPRT-induced apoptosis remains undetermined. We now report that ExoT/ADPRT disrupts focal adhesion sites, activates p38β and JNK, and interferes with integrin-mediated survival signaling; causing atypical anoikis. We show that ExoT/ADPRT-induced anoikis is mediated by the Crk adaptor protein. We found that Crk-/- knockout cells are significantly more resistant to ExoT-induced apoptosis, while Crk-/- cells complemented with Crk are rendered sensitive to ExoT-induced apoptosis. Moreover, a dominant negative (DN) mutant form of Crk phenocopies ExoT-induced apoptosis both kinetically and mechanistically. Crk is generally believed to be a component of focal adhesion (FA) and its role in cellular survival remains controversial in that it has been found to be either pro-survival or pro-apoptosis. Our data demonstrate that although Crk is recruited to FA sites, its function is likely not required for FA assembly or for survival per se. However, when modified by ExoT or by mutagenesis, it can be transformed into a cytotoxin that induces anoikis by disrupting FA sites and interfering with integrin survival signaling. To our knowledge, this is the first example whereby a bacterial toxin exerts its cytotoxicity by subverting the function of an innocuous host cellular protein and turning it against the host cell.  相似文献   
72.
73.
Phylogenies of the palm family based on DNA sequences from thetrnL —trnF region of the chloroplast genome are presented. Although the region is highly conserved in palms and relatively few sites in the aligned data matrix are parsimony informative, a variety of relationships among members of the family are revealed by the analyses, some of which are congruent with the current classification of the palms, and others which are not. However, consensus trees contain high levels of ambiguosity, partly due to the inadequate numbers of informative characters in the dataset. Additional data are required before well resolved palm phylogenies can be generated.  相似文献   
74.
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species‐specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model‐data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.  相似文献   
75.
76.
The author compares the results of his own investigations into the influence of instantaneous and multiple reversible (cold) inactivation of the neocortex on the manifestation and elaboration of conditioned reflexes in cats with dynamic characteristics of spatial-temporal synchronization of biopotentials in the cortex and subcortical formations at different stages of formation and manifestation of the conditioned reflex in animals, and in different functional states (emotions and mental stress) in humans, as presented in the studies by M.N. Livanov and coworkers. It has been stressed that different experimental approaches reveal the one principle of brain functioning, its integral involvement in any purposeful activity.  相似文献   
77.
78.
Probability analysis was carried out of the appearance of single elements of rats behaviour in the process of extinction of a conditioned alimentary motor reflex. The dynamics of effector behavioural components at a sudden cessation of reinforcement (usual schedule of extinction) was compared with cessation of reinforcement signalled by a previously differentiated signal and with reinforcement cessation preceded by a stimulus initially unknown to the animal. If the reinforcement cessation is signalled by a previously differentiated (negative) stimulus, in response to its action the animals "loose the aim", what is revealed in a rapid complete reduction of all elements of the goal-directed alimentary behaviour. Obviously differentiation signal actualises the memory trace of "nonreinforcement" which was formed in the previous negative experience of the animal; this is revealed in accelerated inhibition of the alimentary motor reflex under extinction.  相似文献   
79.
Arid and semiarid ecosystems play a significant role in regulating global carbon cycling, yet our understanding of the controls over the dominant pathways of dryland CO2 exchange remains poor. Substantial amounts of dryland soil are not covered by vascular plants and this patchiness in cover has important implications for spatial patterns and controls of carbon cycling. Spatial variation in soil respiration has been attributed to variation in soil moisture, temperature, nutrients and rhizodeposition, while seasonal patterns have been attributed to changes in moisture, temperature and photosynthetic inputs belowground. To characterize how controls over respiration vary spatially and temporally in a dryland ecosystem and to concurrently explore multiple potential controls, we estimated whole plant net photosynthesis (Anet) and soil respiration at four distances from the plant base, as well as corresponding fine root biomass and soil carbon and nitrogen pools, four times during a growing season. To determine if the controls vary between different plant functional types for Colorado Plateau species, measurements were made on the C4 shrub, Atriplex confertifolia, and C3 grass, Achnatherum hymenoides. Soil respiration declined throughout the growing season and diminished with distance from the plant base, though variations in both were much smaller than expected. The strongest relationship was between soil respiration and soil moisture. Soil respiration was correlated with whole plant Anet, although the relationship varied between species and distance from plant base. In the especially dry year of this study we did not observe any consistent correlations between soil respiration and soil carbon or nitrogen pools. Our findings suggest that abiotic factors, especially soil moisture, strongly regulate the response of soil respiration to biotic factors and soil carbon and nitrogen pools in dryland communities and, at least in dry years, may override expected spatial and seasonal patterns.  相似文献   
80.
Beta diversity may be determined by dispersal limitation, environment, and phylogeographic history. Our objective was to advance the understanding of plant species turnover in rain forests in northern South America and determine which factors are affecting species beta diversity. We evaluated the relative effect of environmental variables (i.e., soil, climate, fragmentation, and flooding frequency) and dispersal limitation (i.e., geographical distance and resistance distance due mountain barriers) on tree beta diversity in 32 1‐ha lowland forest plots. We found that tree species turnover was better explained by environmental distance than by geographical distance. Although soil conditions and flooding regime were good predictors of tree species composition, almost half of the variance remained unexplained. In our study system, the eastern Andean ridge had no significant effect on plant beta diversity, probably because of its young age in relation to the phylogeny. Our results provide support for the importance of environmental factors and suggest a more restricted role of dispersal limitation. Therefore, we advise that conservation strategies of lowland trees should consider specific forest types (e.g., seasonally flooded vs. terra firme, as well as piedmont vs. central Amazonian forests).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号