首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   27篇
  408篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   12篇
  2019年   7篇
  2018年   15篇
  2017年   12篇
  2016年   17篇
  2015年   22篇
  2014年   19篇
  2013年   30篇
  2012年   36篇
  2011年   19篇
  2010年   17篇
  2009年   13篇
  2008年   20篇
  2007年   24篇
  2006年   9篇
  2005年   10篇
  2004年   15篇
  2003年   14篇
  2002年   12篇
  2001年   7篇
  1999年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   3篇
  1971年   1篇
  1970年   4篇
  1969年   4篇
  1968年   1篇
  1966年   1篇
  1965年   3篇
  1964年   2篇
  1963年   1篇
排序方式: 共有408条查询结果,搜索用时 0 毫秒
271.
272.
273.
Ecosystems - Nitrogen (N) enrichment can have large effects on mangroves’ capacity to provide critical ecosystem services by affecting fundamental functions such as N cycling and primary...  相似文献   
274.
275.
Anthropogenic habitat disturbance is fundamentally altering patterns of disease transmission and immunity across the vertebrate tree of life. Most studies linking anthropogenic habitat change and disease focus on habitat loss and fragmentation, but these processes often lead to a third process that is equally important: habitat split. Defined as spatial separation between the multiple classes of natural habitat that many vertebrate species require to complete their life cycles, habitat split has been linked to population declines in vertebrates, e.g. amphibians breeding in lowland aquatic habitats and overwintering in fragments of upland terrestrial vegetation. Here, we link habitat split to enhanced disease risk in amphibians (i) by reviewing the biotic and abiotic forces shaping elements of immunity and (ii) through a spatially oriented field study focused on tropical frogs. We propose a framework to investigate mechanisms by which habitat split influences disease risk in amphibians, focusing on three broad host factors linked to immunity: (i) composition of symbiotic microbial communities, (ii) immunogenetic variation, and (iii) stress hormone levels. Our review highlights the potential for habitat split to contribute to host-associated microbiome dysbiosis, reductions in immunogenetic repertoire, and chronic stress, that often facilitate pathogenic infections and disease in amphibians and other classes of vertebrates. We highlight that targeted habitat-restoration strategies aiming to connect multiple classes of natural habitats (e.g. terrestrial–freshwater, terrestrial–marine, marine–freshwater) could enhance priming of the vertebrate immune system through repeated low-load exposure to enzootic pathogens and reduced stress-induced immunosuppression.  相似文献   
276.
Primary lung cancer remains the leading cause of cancer-related death in the Western world, and the lung is a common site for recurrence of extrathoracic malignancies. Small-animal (rodent) models of cancer can have a very valuable role in the development of improved therapeutic strategies. However, detection of mouse pulmonary tumors and their subsequent response to therapy in situ is challenging. We have recently described MRI as a reliable, reproducible and nondestructive modality for the detection and serial monitoring of pulmonary tumors. By combining respiratory-gated data acquisition methods with manual and automated segmentation algorithms described by our laboratory, pulmonary tumor burden can be quantitatively measured in approximately 1 h (data acquisition plus analysis) per mouse. Quantitative, analytical methods are described for measuring tumor burden in both primary (discrete tumors) and metastatic (diffuse tumors) disease. Thus, small-animal MRI represents a novel and unique research tool for preclinical investigation of therapeutic strategies for treatment of pulmonary malignancies, and it may be valuable in evaluating new compounds targeting lung cancer in vivo.  相似文献   
277.
Extensive in silico search of the genome of Caenorhabditis elegans revealed the presence of 33 genes coding for globins that are all transcribed. These globins are very diverse in gene and protein structure and are localized in a variety of cells, mostly neurons. The large number of C. elegans globin genes is assumed to be the result of multiple evolutionary duplication and radiation events. Processes of subfunctionalization and diversification probably led to their cell-specific expression patterns and fixation into the genome. To date, four globins (GLB-1, GLB-5, GLB-6, and GLB-26) have been partially characterized physicochemically, and the crystallographic structure of two of them (GLB-1 and GLB-6) was solved. In this article, a three-dimensional model was designed for the other two globins (GLB-5 and GLB-26), and overlays of the globins were constructed to highlight the structural diversity among them. It is clear that although they all share the globin fold, small variations in the three-dimensional structure have major implications on their ligand-binding properties and possibly their function. We also review here all the information available so far on the globin family of C. elegans and suggest potential functions.  相似文献   
278.
An evolutionary ecology of individual differences   总被引:1,自引:0,他引:1  
Individuals often differ in what they do. This has been recognised since antiquity. Nevertheless, the ecological and evolutionary significance of such variation is attracting widespread interest, which is burgeoning to an extent that is fragmenting the literature. As a first attempt at synthesis, we focus on individual differences in behaviour within populations that exceed the day-to-day variation in individual behaviour (i.e. behavioural specialisation). Indeed, the factors promoting ecologically relevant behavioural specialisation within natural populations are likely to have far-reaching ecological and evolutionary consequences. We discuss such individual differences from three distinct perspectives: individual niche specialisations, the division of labour within insect societies and animal personality variation. In the process, while recognising that each area has its own unique motivations, we identify a number of opportunities for productive 'cross-fertilisation' among the (largely independent) bodies of work. We conclude that a complete understanding of evolutionarily and ecologically relevant individual differences must specify how ecological interactions impact the basic biological process (e.g. Darwinian selection, development and information processing) that underpin the organismal features determining behavioural specialisations. Moreover, there is likely to be co-variation amongst behavioural specialisations. Thus, we sketch the key elements of a general framework for studying the evolutionary ecology of individual differences.  相似文献   
279.
280.
A series of 2-methoxyacylhydrazones were optimized to yield compounds with high affinity for PDE10A. Several compounds demonstrated efficacy in animal models of schizophrenia, including conditioned avoidance response and a pro-psychotic phencyclidine hyperactivity model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号