首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7240篇
  免费   535篇
  7775篇
  2021年   49篇
  2020年   42篇
  2018年   101篇
  2017年   102篇
  2016年   167篇
  2015年   281篇
  2014年   339篇
  2013年   345篇
  2012年   463篇
  2011年   474篇
  2010年   302篇
  2009年   207篇
  2008年   357篇
  2007年   334篇
  2006年   303篇
  2005年   312篇
  2004年   280篇
  2003年   255篇
  2002年   251篇
  2001年   211篇
  2000年   265篇
  1999年   176篇
  1998年   74篇
  1997年   50篇
  1996年   61篇
  1995年   50篇
  1994年   51篇
  1993年   45篇
  1992年   116篇
  1991年   121篇
  1990年   113篇
  1989年   70篇
  1988年   102篇
  1987年   82篇
  1986年   76篇
  1985年   81篇
  1984年   76篇
  1983年   56篇
  1982年   54篇
  1981年   47篇
  1980年   37篇
  1979年   68篇
  1978年   39篇
  1977年   54篇
  1975年   48篇
  1973年   46篇
  1972年   37篇
  1971年   42篇
  1969年   35篇
  1968年   35篇
排序方式: 共有7775条查询结果,搜索用时 0 毫秒
291.
The ndh genes encoding for the subunits of NAD(P)H dehydrogenase complex represent the largest family of plastid genes without a clearly defined function. Tobacco (Nicotiana tabacum) plastid transformants were produced in which the ndhB gene was inactivated by replacing it with a mutant version possessing translational stops in the coding region. Western-blot analysis indicated that no functional NAD(P)H dehydrogenase complex can be assembled in the plastid transformants. Chlorophyll fluorescence measurements showed that dark reduction of the plastoquinone pool by stromal reductants was impaired in ndhB-inactivated plants. Both the phenotype and photosynthetic performance of the plastid transformants was completely normal under favorable conditions. However, an enhanced growth retardation of ndhB-inactivated plants was revealed under humidity stress conditions causing a moderate decline in photosynthesis via stomatal closure. This distinctive phenotype was mimicked under normal humidity by spraying plants with abscisic acid. Measurements of CO(2) fixation demonstrated an enhanced decline in photosynthesis in the mutant plants under humidity stress, which could be restored to wild-type levels by elevating the external CO(2) concentration. These results suggest that the plastid NAD(P)H:plastoquinone oxidoreductase in tobacco performs a significant physiological role by facilitating photosynthesis at moderate CO(2) limitation.  相似文献   
292.
Paraplegin is an m-AAA protease of the mitochondrial inner membrane that is linked to hereditary spastic paraplegias. The gene encodes an FtsH-homology protease domain in tandem with an AAA+ homology ATPase domain. The protein is believed to form a hexamer that uses ATPase-driven conformational changes in its AAA-domain to deliver substrate peptides to its protease domain. We present the crystal structure of the AAA-domain of human paraplegin bound to ADP at 2.2 Å. This enables assignment of the roles of specific side chains within the catalytic cycle, and provides the structural basis for understanding the mechanism of disease mutations.

Enhanced version

This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.  相似文献   
293.

Background

The cytoskeletal adaptor protein vinculin plays a fundamental role in cell contact regulation and affects central aspects of cell motility, which are essential to both embryonal development and tissue homeostasis. Functional regulation of this evolutionarily conserved and ubiquitously expressed protein is dominated by a high-affinity, autoinhibitory head-to-tail interaction that spatially restricts ligand interactions to cell adhesion sites and, furthermore, limits the residency time of vinculin at these sites. To date, no mutants of the vinculin protein have been characterized in animal models.

Methodology/Principal Findings

Here, we investigate vinculin-ΔEx20, a splice variant of the protein lacking the 68 amino acids encoded by exon 20 of the vinculin gene VCL. Vinculin-ΔEx20 was found to be expressed alongside with wild type protein in a knock-in mouse model with a deletion of introns 20 and 21 (VCL-ΔIn20/21 allele) and shows defective head-to-tail interaction. Homozygous VCL-ΔIn20/21 embryos die around embryonal day E12.5 showing cranial neural tube defects and exencephaly. In mouse embryonic fibroblasts and upon ectopic expression, vinculin-ΔEx20 reveals characteristics of constitutive head binding activity. Interestingly, the impact of vinculin-ΔEx20 on cell contact induction and stabilization, a hallmark of the vinculin head domain, is only moderate, thus allowing invasion and motility of cells in three-dimensional collagen matrices. Lacking both F-actin interaction sites of the tail, the vinculin-ΔEx20 variant unveils vinculin''s dynamic binding to cell adhesions independent of a cytoskeletal association, and thus differs from head-to-tail binding deficient mutants such as vinculin-T12, in which activated F-actin binding locks the protein variant to cell contact sites.

Conclusions/Significance

Vinculin-ΔEx20 is an active variant supporting adhesion site stabilization without an enhanced mechanical coupling. Its presence in a transgenic animal reveals the potential of splice variants in the vinculin gene to alter vinculin function in vivo. Correct control of vinculin is necessary for embryonic development.  相似文献   
294.
295.
Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy.  相似文献   
296.
297.
Flavodoxin from the gastric pathogen Helicobacter pylori has been shown to be the electron acceptor of the essential pyruvate-oxidoreductase enzyme complex and proposed to be involved in the pathogenesis of gastric MALToma. In order to obtain a sufficient amount for biochemical and structural studies, we overexpressed the protein either with a C-terminal His(6) -tag or as a fusion protein upstream of intein- and chitin-binding domains. With both expression systems we succeeded at purifying soluble and functional flavodoxin containing the cofactor FMN. When expressing with a His(6) -tag, we purified approximately 20 mg flavodoxin per liter of bacterial culture, while expression as an intein-CBD fusion protein with autocatalytic removal of the intein-CBD part rendered only approximately 1 mg of purified flavodoxin per liter of bacterial culture. Expressed as an intein-CBD fusion protein, flavodoxin copurified with a C-terminal degradation product, which was not observed for expression with a His(6) -tag. However, we were able to obtain protein crystals suited for X-ray structure determination from flavodoxin expressed as an intein-CBD fusion protein, but not from flavodoxin expressed with a C-terminal His(6) -tag. We further report the induction of a rabbit antiserum specific for H. pylori flavodoxin.  相似文献   
298.
The development of immunosuppression during polymicrobial sepsis is associated with the failure of dendritic cells (DC) to promote the polarization of T helper (Th) cells toward a protective Th1 type. The aim of the study was to test potential immunomodulatory approaches to restore the capacity of splenic DC to secrete interleukin (IL) 12 that represents the key cytokine in Th1 cell polarization. Murine polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Splenic DC were isolated at different time points after CLP or sham operation, and stimulated with bacterial components in the presence or absence of neutralizing anti-IL-10 antibodies, murine interferon (IFN) gamma, and/or granulocyte macrophage colony-stimulating factor (GM-CSF). DC from septic mice showed an impaired capacity to release the pro-inflammatory and Th1-promoting cytokines tumor necrosis factor alpha, IFN-gamma, and IL-12 in response to bacterial stimuli, but secreted IL-10. Endogenous IL-10 was not responsible for the impaired IL-12 secretion. Up to 6 h after CLP, the combined treatment of DC from septic mice with IFN-gamma and GM-CSF increased the secretion of IL-12. Later, DC from septic mice responded to IFN-gamma and GM-CSF with increased expression of the co-stimulatory molecule CD86, while IL-12 secretion was no more enhanced. In contrast, splenic macrophages from septic mice during late sepsis responded to GM-CSF with increased cytokine release. Thus, therapy of sepsis with IFN-gamma/GM-CSF might be sufficient to restore the activity of macrophages, but fails to restore DC function adequate for the development of a protective Th1-like immune response.  相似文献   
299.
Maintenance of physiologic phosphate balance is of crucial biological importance, as it is fundamental to cellular function, energy metabolism, and skeletal mineralization. Fibroblast growth factor-23 (FGF-23) is a master regulator of phosphate homeostasis, but the molecular mechanism of such regulation is not yet completely understood. Targeted disruption of the Fgf-23 gene in mice (Fgf-23-/-) elicits hyperphosphatemia, and an increase in renal sodium/phosphate co-transporter 2a (NaPi2a) protein abundance. To elucidate the pathophysiological role of augmented renal proximal tubular expression of NaPi2a in Fgf-23-/- mice and to examine serum phosphate-independent functions of Fgf23 in bone, we generated a new mouse line deficient in both Fgf-23 and NaPi2a genes, and determined the effect of genomic ablation of NaPi2a from Fgf-23-/- mice on phosphate homeostasis and skeletal mineralization. Fgf-23-/-/NaPi2a-/- double mutant mice are viable and exhibit normal physical activities when compared to Fgf-23-/- animals. Biochemical analyses show that ablation of NaPi2a from Fgf-23-/- mice reversed hyperphosphatemia to hypophosphatemia by 6 weeks of age. Surprisingly, despite the complete reversal of serum phosphate levels in Fgf-23-/-/NaPi2a-/-, their skeletal phenotype still resembles the one of Fgf23-/- animals. The results of this study provide the first genetic evidence of an in vivo pathologic role of NaPi2a in regulating abnormal phosphate homeostasis in Fgf-23-/- mice by deletion of both NaPi2a and Fgf-23 genes in the same animal. The persistence of the skeletal anomalies in double mutants suggests that Fgf-23 affects bone mineralization independently of systemic phosphate homeostasis. Finally, our data support (1) that regulation of phosphate homeostasis is a systemic effect of Fgf-23, while (2) skeletal mineralization and chondrocyte differentiation appear to be effects of Fgf-23 that are independent of phosphate homeostasis.  相似文献   
300.
The Drosophila virilis species group offers valuable opportunities for studying the roles of chromosomal re-arrangements and mating signals in speciation. The 13 species are divided into two subgroups, the montana and virilis 'phylads'. There is greater differentiation among species within the montana phylad in both karyotype and acoustic signals than exists among members of the virilis phylad. Drosophila montana is a divergent species which is included in the montana phylad. Here, we analyse the phylogeography of D. montana to provide a framework for understanding divergence of acoustic signals among populations. We analysed mitochondrial sequences corresponding to the cytochrome oxidase I and cytochrome oxidase II genes, as well as 16 microsatellite loci, from 108 lines of D. montana covering most of the species' range. The species shows a clear genetic differentiation between North American and Scandinavian populations. Microsatellite allele frequencies and mitochondrial DNA haplotypes gave significant FST values between populations from Canada, USA and Finland. A Bayesian analysis of population structure based on the microsatellite frequencies showed four genetically distinct groups, corresponding to these three populations plus a small sample from Japan. A network based on mitochondrial haplotypes showed two Finnish clades of very different shape and variability, and another clade with all sequences from North America and Japan. All D. montana populations showed evidence of demographic expansion but the patterns inferred by coalescent analysis differed between populations. The divergence times between Scandinavian and North American clades were estimated to range from 450,000 to 900,000 years with populations in Canada and the USA possibly representing descendants of different refugial populations. Long-term separation of D. montana populations could have provided the opportunity for differentiation observed in male signal traits, especially carrier frequency of the song, but relaxation of sexual selection during population expansion may have been necessary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号