首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   86篇
  国内免费   1篇
  1102篇
  2023年   12篇
  2022年   22篇
  2021年   26篇
  2020年   15篇
  2019年   10篇
  2018年   30篇
  2017年   18篇
  2016年   42篇
  2015年   67篇
  2014年   79篇
  2013年   76篇
  2012年   102篇
  2011年   77篇
  2010年   56篇
  2009年   39篇
  2008年   59篇
  2007年   55篇
  2006年   48篇
  2005年   49篇
  2004年   31篇
  2003年   33篇
  2002年   20篇
  2001年   10篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1980年   4篇
  1979年   3篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   6篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
  1967年   3篇
排序方式: 共有1102条查询结果,搜索用时 15 毫秒
81.
Embryonic staging tables provide information to standardize embryological investigations and to subsidize discussions about evolution. We have established a developmental staging table for Iguana iguana iguana. The sample was composed of 142 embryos, incubated at a constant temperature and collected at regular intervals. Morphological features as pharyngeal arches, craniofacial structures, eyes, limbs, claws, pigmentation, scales and egg tooth were evaluated to determine development stages. The normal staging table includes 17 stages from oviposition to hatching, based on chronology and morphological external features. Stages from 1 to 27 occur before oviposition. Stage 28 was the first described, because all embryos presented limb bud anlage, key feature of the previous stage. We used pharyngeal arches and limb buds to describe the first stages; claws, genital papilla and scales to describe the middle stages; and pigmentation, size and egg tooth to describe the last stages. Incubation lasted approximately 2 months in a controlled environment. The results were similar to the data from other lizards, confirming the embryonic conservative pattern of the group.  相似文献   
82.
Mytilus foot protein type 6 (mfp‐6) is crucial for maintaining the reducing conditions needed for optimal wet adhesion in marine mussels. In this report, we describe the expression and production of a recombinant Mytilus californianus foot protein type 6 variant 1 (rmfp‐6.1) fused with a hexahistidine affinity tag in Escherichia coli and its purification by affinity chromatography. Recombinant mfp‐6 showed high purification yields of 5–6 mg L?1 cell culture and excellent solubility in low pH buffers that retard oxidation of its many thiol groups. Purified rmfp‐6.1 protein showed high 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging activity when compared with vitamin C. Using the highly sensitive surface forces apparatus (SFA) technique to measure interfacial surface forces in the nano‐Newton range, we show that rmfp‐6.1 is also able to rescue the oxidation‐dependent adhesion loss of mussel foot protein 3 (mfp‐3) at pH 3. The adhesion rescue is related to a reduction of dopaquinone back to 3,4‐dihydroxyphenyl‐l ‐alanine in mfp‐3, which is the reverse reaction observed during the detrimental enzymatic browning process in fruits and vegetables. Broadly viewed, rmfp‐6.1 has potential as a versatile antioxidant for applications ranging from personal products to antispoilants for perishable foods during processing and storage. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1587–1593, 2013  相似文献   
83.
84.
85.
The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
86.
The patchoulol synthase (PTS) from Pogostemon cablin is a versatile sesquiterpene synthase and produces more than 20 valuable sesquiterpenes by conversion of the natural substrate farnesyl pyrophosphate (FPP). PTS has the potential to be used as a biocatalyst for the production of valuable sesquiterpenes such as (−)-patchoulol. The objective of the present study is to develop an efficient biotransformation and to characterize the biocatalytic mechanism of the PTS in detail. For this purpose, soluble PTS was prepared using an optimized cultivation protocol and continuous downstream process with a purity of 98%. The PTS biotransformation was then optimized regarding buffer composition, pH-value, and temperature for biotransformation as well as functional and kinetic properties to improve productivity. For the bioconversion of FPP, the highest enzyme activity was reached with the 2-(N-morphlino)ethanesulfonic acid (MES) buffer containing 10% (v/v) glycerol and 10 mM MgCl2 at pH 6.4 and 34°C. The PTS showed an unusual substrate inhibition for sesquiterpene synthases indicating an intermediate sesquiterpene formed in the active center. Deuteration experiments were used to gain further insights into the biocatalytic mechanism described in literature. Thus it could be shown that a second substrate binding site must be responsible for substrate inhibition and that further protonation and deprotonation steps are involved in the reaction mechanism.  相似文献   
87.
Suppressor of phyA-105 (SPA1) is a phytochrome A-specific signaling intermediate that acts as a light-dependent repressor of photomorphogenesis in Arabidopsis seedlings. SPA1 is part of a small gene family comprising three genes: SPA1-related 2 (SPA2), SPA1-related 3 (SPA3), and SPA1-related 4 (SPA4). Here, we investigate the functions of SPA3 and SPA4, two very closely related genes coding for proteins with 74% identical amino acids. Seedlings with mutations in SPA3 or SPA4 exhibit enhanced photomorphogenesis in the light, but show no phenotype in darkness. While there are small differences between the effects of spa3 and spa4 mutations, it is apparent that SPA3 and SPA4 function to inhibit light responses in continuous far-red, red, and blue light. Phytochrome A is necessary for all aspects of the spa4 mutant phenotype, suggesting that SPA4, like SPA1, acts specifically in phytochrome A signaling. Enhanced photoresponsiveness of spa3 mutants is also fully dependent on phytochrome A in far-red and blue light, but not in red light. Hence, SPA3 function in red light may be dependent on other phytochromes in addition to phytochrome A. Using yeast two-hybrid and in vitro interaction assays, we further show that SPA3 as well as SPA4 can physically interact with the constitutive repressor of light signaling COP1. Deletion analyses suggest that SPA3 and SPA4, like SPA1, bind to the coiled-coil domain of COP1. Taken together, our results have identified two new loci coding for negative regulators that may be involved in fine tuning of light responses by interacting with COP1.  相似文献   
88.
The Nucleolar Localization Elements (NoLEs) of Xenopus laevis U3 small nucleolar RNA (snoRNA) have been defined. Fluorescein-labeled wild-type U3 snoRNA injected into Xenopus oocyte nuclei localized specifically to nucleoli as shown by fluorescence microscopy. Injection of mutated U3 snoRNA revealed that the 5′ region containing Boxes A and A′, known to be important for rRNA processing, is not essential for nucleolar localization. Nucleolar localization of U3 snoRNA was independent of the presence and nature of the 5′ cap and the terminal stem. In contrast, Boxes C and D, common to the Box C/D snoRNA family, are critical elements for U3 localization. Mutation of the hinge region, Box B, or Box C′ led to reduced U3 nucleolar localization. Results of competition experiments suggested that Boxes C and D act in a cooperative manner. It is proposed that Box B facilitates U3 snoRNA nucleolar localization by the primary NoLEs (Boxes C and D), with the hinge region of U3 subsequently base pairing to the external transcribed spacer of pre-rRNA, thus positioning U3 snoRNA for its roles in rRNA processing.  相似文献   
89.
Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the “random forest” ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.  相似文献   
90.
The aim of this study was to investigate the modifying influence of moderate ultraviolet-B (UV-B) radiation exposure on structurally different flavonol glycosides and hydroxycinnamic acid derivatives during pre-harvest using kale, a leafy Brassica species with a wide spectrum of different non-acylated and acylated flavonol glycosides. Juvenile kale plants were treated with short-term (1 day), moderate UV-B radiation [0.22-0.88 kJ m?2 day?1 biologically effective UV-B (UV-B(BE))]. Twenty compounds were quantified, revealing a structure-specific response of flavonol glycosides and hydroxycinnamic acid derivatives to UV-B radiation. A dose- and structure-dependent response of the investigated phenolic compounds to additional UV-B radiation was found. The investigated quercetin glycosides decreased under UV-B; for kaempferol glycosides, however, the amount of sugar moieties and the flavonol glycoside hydoxycinnamic acid residue influenced the response to UV-B. Monoacylated kaempferol tetraglucosides decreased in the investigated UV-B range, whereas the monoacylated kaempferol diglucosides increased strongly with doses of 0.88 kJ m?2 day?1 UV-B(BE) . The UV-B-induced increase in monoacylated kaempferol triglucosides was dependent on the acylation pattern. Furthermore, the hydroxycinnamic acid glycosides disinapoyl-gentiobiose and sinapoyl-feruloyl-gentiobiose were enhanced in a dose-dependent manner under UV-B. While UV-B radiation treatments often focus on flavonol aglycones or total flavonols, our investigations were extended to structurally different non-acylated and acylated glycosides of quercetin and kaempferol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号