首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   86篇
  国内免费   1篇
  1102篇
  2023年   12篇
  2022年   22篇
  2021年   26篇
  2020年   15篇
  2019年   10篇
  2018年   30篇
  2017年   18篇
  2016年   42篇
  2015年   67篇
  2014年   79篇
  2013年   76篇
  2012年   102篇
  2011年   77篇
  2010年   56篇
  2009年   39篇
  2008年   59篇
  2007年   55篇
  2006年   48篇
  2005年   49篇
  2004年   31篇
  2003年   33篇
  2002年   20篇
  2001年   10篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1980年   4篇
  1979年   3篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   6篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
  1967年   3篇
排序方式: 共有1102条查询结果,搜索用时 0 毫秒
131.
132.
The quinazoline derivative, 4-N-(3'-bromo-phenyl)amino-6,7-dimethoxyquinazoline (PD153035), has recently been identified as a potential drug for the treatment of proliferative disease. Here, we report a sensitive high performance liquid chromatography (HPLC)-based quantitative detection method for measurement of PD153035 levels in rat plasma. Sample pretreatment involved a two-step extraction with chloroform. The analytes were separated on a column packed with OmniSpher C18 material and eluted with acetonitrile-0.1 M ammonium acetate, pH 7.2 (70:30, v/v). The column effluent was monitored by UV detection at 330 nm. A linear response was achieved over the concentration range 0.50-100.00 microM using multilevel calibration with an internal standard. The analytical method inter- and intra-run accuracy and precision were better than +/-15%. The lower limit of quantification was 0.50 microM. The method has been applied to study the preclinical pharmacokinetics of this compound in rats.  相似文献   
133.
Antigenic peptides (epitopes) presented on the cell surface by MHC class I molecules derive from proteolytic degradation of endogenous proteins. Some recent studies have proposed that the majority of epitopes stem from so-called defective ribosomal products (DRiPs), i.e., freshly synthesized proteins that are unable to adopt the native conformation and thus undergo immediate degradation. However, a reliable computational analysis of the data underlying this hypothesis was lacking so far. Therefore, we have applied kinetic modeling to derive from existing kinetic data (Princiotta et al. 2003, Immunity 18, 343-354) the rates of the major processes involved in the cellular protein turnover and MHC class I-mediated Ag presentation. From our modeling approach, we conclude that in these experiments 1) the relative share of DRiPs in the total protein synthesis amounted to approximately 10% thus being much lower than reported so far, 2) DRiPs may become the decisive source of epitopes within an early phase after onset of the synthesis of a long-lived (e.g., virus derived) protein, and 3) inhibition of protein synthesis by the translation inhibitor cycloheximide appears to be paralleled with an instantaneous decrease of protein degradation down to approximately 1/3 of the normal value.  相似文献   
134.

Background and Scope

Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored.

Methods

Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants.

Key Results

The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium.

Conclusions

Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.  相似文献   
135.

Background

The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood.

Methodology/Principal Findings

In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor.

Conclusions/Significance

This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.  相似文献   
136.
137.
138.
A new challenge in biotechnological processes is the development of flexible bioprocessing platforms, allowing strain selection, facilitating scale-up and integrating separation steps. Miniaturization of such a cultivation system allows parallel use and the saving of resources but makes the supply of oxygen to the cells difficult. In this work we present a membrane aerated hollow-fiber microbioreactor (HFMBR) which consists of an acrylic glass module equipped with two different types of membrane fibers. Fibers of polyethersulfone and polyvinyldifluoride were used for substrate and oxygen supply, respectively. Cultivation of E. coli as model organism and production of His-tagged GFP were carried out in the extracapillary space of the membrane aerated HFMBR and compared with cultivations in shaking flask which are commonly used for screening experiments. The measurement of the oxygen transfer capacity and the online monitoring of the dissolved oxygen during the cultivation were performed using a fiber optic oxygen sensor. Online measurement of the optical density was also integrated to the bioreactor. Due to efficient oxygen transfer, a better cell growth than in the shaking flask experiments was achieved, while no negative influence on the GFP productivity was observed in the membrane aerated bioreactor. Thus the feasibility of a future integrated downstreaming could also be demonstrated.  相似文献   
139.
140.
In acute ischemic stroke, time from symptom onset to intervention is a decisive prognostic factor. In order to reduce this time, prehospital thrombolysis at the emergency site would be preferable. However, apart from neurological expertise and laboratory investigations a computed tomography (CT) scan is necessary to exclude hemorrhagic stroke prior to thrombolysis. Therefore, a specialized ambulance equipped with a CT scanner and point-of-care laboratory was designed and constructed. Further, a new stroke identifying interview algorithm was developed and implemented in the Berlin emergency medical services. Since February 2011 the identification of suspected stroke in the dispatch center of the Berlin Fire Brigade prompts the deployment of this ambulance, a stroke emergency mobile (STEMO). On arrival, a neurologist, experienced in stroke care and with additional training in emergency medicine, takes a neurological examination. If stroke is suspected a CT scan excludes intracranial hemorrhage. The CT-scans are telemetrically transmitted to the neuroradiologist on-call. If coagulation status of the patient is normal and patient''s medical history reveals no contraindication, prehospital thrombolysis is applied according to current guidelines (intravenous recombinant tissue plasminogen activator, iv rtPA, alteplase, Actilyse).Thereafter patients are transported to the nearest hospital with a certified stroke unit for further treatment and assessment of strokeaetiology. After a pilot-phase, weeks were randomized into blocks either with or without STEMO care. Primary end-point of this study is time from alarm to the initiation of thrombolysis. We hypothesized that alarm-to-treatment time can be reduced by at least 20 min compared to regular care.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号