首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4035篇
  免费   484篇
  4519篇
  2023年   22篇
  2022年   41篇
  2021年   59篇
  2020年   41篇
  2019年   45篇
  2018年   58篇
  2017年   50篇
  2016年   87篇
  2015年   165篇
  2014年   175篇
  2013年   195篇
  2012年   263篇
  2011年   256篇
  2010年   163篇
  2009年   129篇
  2008年   211篇
  2007年   212篇
  2006年   190篇
  2005年   173篇
  2004年   203篇
  2003年   157篇
  2002年   139篇
  2001年   94篇
  2000年   107篇
  1999年   98篇
  1998年   64篇
  1997年   45篇
  1996年   33篇
  1995年   32篇
  1994年   34篇
  1993年   54篇
  1992年   72篇
  1991年   60篇
  1990年   56篇
  1989年   60篇
  1988年   62篇
  1987年   50篇
  1986年   46篇
  1985年   42篇
  1984年   42篇
  1983年   39篇
  1982年   30篇
  1981年   27篇
  1979年   29篇
  1978年   19篇
  1977年   25篇
  1976年   30篇
  1975年   20篇
  1973年   24篇
  1972年   19篇
排序方式: 共有4519条查询结果,搜索用时 15 毫秒
71.
The ability of interleukin 2 (IL 2), interleukin 3 (IL 3), and granulocyte/macrophage colony-stimulating factor (GM-CSF) to induce the proliferation of cells from thymus, spleen, or bone marrow was examined and compared with their ability to induce expression of the enzyme 20-alpha-hydroxysteroid dehydrogenase (20 alpha SDH). In the thymus, the peanut agglutinin agglutinated cells (PNA+) lacked 20 alpha SDH and showed no detectable response to IL 2, IL 3, or GM-CSF in either proliferation or induction of 20 alpha SDH. In contrast, the PNA nonagglutinated (PNA-) subpopulation expressed 20 alpha SDH and proliferated in response to Con A and/or IL 2. The responding cells that could be expanded in vitro with IL 2 expressed high levels of 20 alpha SDH. Neither IL 3 nor GM-CSF in the presence or absence of Con A had a demonstrable effect on the PNA- population. In cultures of bone marrow cells, both IL 3 and GM-CSF induced proliferation, whereas IL 2 had no effect on proliferation in the presence or absence of Con A. Thy-1-depleted bone marrow cells, expanded in tissue culture with IL3, contained cells that co-expressed Thy-1 and 20 alpha SDH. In contrast, cells proliferating in vitro to GM-CSF did not expressed Thy-1 or 20 alpha SDH. In cultures of normal splenic lymphocytes, two populations of cells capable of expressing 20 alpha SDH were detected. One population could be expanded in vitro with IL 2 and Con A, whereas the second was responsive to IL 3. In spleens from athymic mice, only the latter cells were detected. These results demonstrate that IL 3 and IL 2 responsiveness distinguishes two populations of 20 alpha SDH cells. The relevance of these observations to the possible relationship of IL 3 and IL 2 in T cell differentiation is discussed.  相似文献   
72.
Chlorophyll reduction in the seed of Brassica can be achieved by downregulating its synthesis. To reduce chlorophyll synthesis, we have used a cDNA clone of Brassica napus encoding glutamate 1-semialdehyde aminotransferase (GSA-AT) to make an antisense construct for gene manipulation. Antisense glutamate 1-semialdehyde aminotransferase gene (Gsa) expression, directed by a Brassica napin promoter, was targeted specifically to the embryo of the developing seed. Transformants expressing antisense Gsa showed varying degrees of inhibition resulting in a range of chlorophyll reduction in the seeds. Seed growth and development were not affected by reduction of chlorophyll. Seeds from selfed transgenic plants germinated with high efficiency and growth of seedlings was vigorous. Seedlings from T2 transgenic lines segregated into three distinctive phenotypes: dark green, light green and yellow, indicating the dominant inheritance of Gsa antisense gene. These transgenic lines have provided useful materials for the development of a low chlorophyll seed variety of B. napus.  相似文献   
73.
Summary Experiments were conducted to determine the effects of brassinosteroids on microspore embryogenesis in Brassica species. Two compounds, 24-epibrassinolide (EBR) and brassinolide (BL), were evaluated. An increase in embryogenesis was observed in all Brassica napus lines evaluated, including Topas 4079 and several recalcitrant cultivars: Garrison, Westar, and Allons. Microspore embryogenesis, calculated as the number of embryos at 21 d of culture, was increased in the recalcitrant cultivars up to 12 times that of the control. An increase in microspore embryogenesis was also observed for B. juncea when EBR or BL was added to the culture medium. In constrast, no significant increases in embryogenesis was observed for several other Brassica species evaluated (i.e. B. carinata, B. nigra, and B. rapa). The addition of brassinosteroids to the induction media did not affect the subsequent conversion of the embryos to plantlets, but did appear to influence chromosome doubling.  相似文献   
74.
The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [13C]acetate was used in SIP to label the DNA of the denitrifiers. The [13C]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking up [14C]acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the wastewater industry to enhance denitrification.  相似文献   
75.
K M Keller  P R Brauer  J M Keller 《Biochemistry》1989,28(20):8100-8107
Swiss mouse 3T3 cells, when grown in the presence of 5 mM chlorate, an inhibitor of PAPS synthesis, produce heparan sulfate glycosaminoglycan chains containing only about 8% of the sulfate normally present and which have lost the ability to bind to fibronectin. These undersulfated chains are sensitive to nitrous acid at pH 4.5, indicating that many glucosaminyl residues have unsubstituted amino groups. The iduronic acid content of the heparan sulfate produced in the presence of chlorate is reduced to less than 7% as compared to the 36% in that from untreated cells. The chlorate-treated cells do not demonstrate any alterations in their growth control. However, the spreading behavior of these cells is altered to a flat rounded morphology compared to the more typical fibroblastic appearance of the untreated cell. The sulfation of chondroitin chains is also inhibited, but at a lower chlorate concentration which does not alter growth control or the spreading ability of the cells. These data indicate that (a) 3T3 cell surface heparan sulfate proteoglycan is not involved in growth control but may be involved in cell spreading, (b) the use of chlorate should be a valuable method for the study of the biosynthesis and structure/function relationships of sulfated glycosaminoglycans, and (c) the temporal sequence of the heparan sulfate chain modification reactions predicted from results of studies with cell-free extracts also operates in the cell.  相似文献   
76.
Exploring Nitrilase Sequence Space for Enantioselective Catalysis   总被引:6,自引:1,他引:6       下载免费PDF全文
Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized. In this study, 137 unique nitrilases, discovered from screening of >600 biotope-specific environmental DNA (eDNA) libraries, were characterized. Using culture-independent means, phylogenetically diverse genomes were captured from entire biotopes, and their genes were expressed heterologously in a common cloning host. Nitrilase genes were targeted in a selection-based expression assay of clonal populations numbering 106 to 1010 members per eDNA library. A phylogenetic analysis of the novel sequences discovered revealed the presence of at least five major sequence clades within the nitrilase subfamily. Using three nitrile substrates targeted for their potential in chiral pharmaceutical synthesis, the enzymes were characterized for substrate specificity and stereospecificity. A number of important correlations were found between sequence clades and the selective properties of these nitrilases. These enzymes, discovered using a high-throughput, culture-independent method, provide a catalytic toolbox for enantiospecific synthesis of a variety of carboxylic acid derivatives, as well as an intriguing library for evolutionary and structural analyses.  相似文献   
77.
Several questions concerning the survival of isolated neurons and neuronal stem and progenitor cells (NPCs) have not been answered in the past: (1) If lactate is discussed as a major physiological substrate of neurons, do neurons and NPCs survive in a glucose-free lactate environment? (2) If elevated levels of glucose are detrimental to neuronal survival during ischemia, do high concentrations of glucose (up to 40 mmol/L) damage neurons and NPCs? (3) Which is the detrimental factor in oxygen glucose deprivation (OGD), lack of oxygen, lack of glucose, or the combination of both? Therefore, in the present study, we exposed rat cortical neurons and NPCs to different concentrations of d-glucose ranging from 0 to 40 mmol/L, or 10 and 20 mmol/L l-lactate under normoxic and anoxic conditions, as well as in OGD. After 24 h, we measured cellular viability by biochemical assays and automated cytochemical morphometry, pH values, bicarbonate, lactate and glucose concentrations in the cell culture media, and caspases activities. We found that (1) neurons and NPCs survived in a glucose-free lactate environment at least up to 24 h, (2) high glucose concentrations >5 mmol/L had no effect on cell viability, and (3) cell viability was reduced in normoxic glucose deprivation to 50% compared to 10 mmol/L glucose, whereas cell viability in OGD did not differ from that in anoxia with lactate which reduced cell viability to 30%. Total caspases activities were increased in the anoxic glucose groups only. Our data indicate that (1) neurons and NPCs can survive with lactate as exclusive metabolic substrate, (2) the viability of isolated neurons and NPCs is not impaired by high glucose concentrations during normoxia or anoxia, and (3) in OGD, low glucose concentrations, but not low oxygen levels are detrimental for neurons and NPCs.  相似文献   
78.
The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. We have developed a strategy for creating novel disease resistance traits whereby transgenic plants respond to infection by a virulent pathogen with the production of an elicitor. To this end, we generated transgenic tobacco plants harboring a fusion between the pathogen-inducible tobacco hsr 203J gene promoter and a Phytophthora cryptogea gene encoding the highly active elicitor cryptogein. Under noninduced conditions, the transgene was silent, and no cryptogein could be detected in the transgenic plants. In contrast, infection by the virulent fungus P. parasitica var nicotianae stimulated cryptogein production that coincided with the fast induction of several defense genes at and around the infection sites. Induced elicitor production resulted in a localized necrosis that resembled a P. cryptogea-induced hypersensitive response and that restricted further growth of the pathogen. The transgenic plants displayed enhanced resistance to fungal pathogens that were unrelated to Phytophthora species, such as Thielaviopsis basicola, Erysiphe cichoracearum, and Botrytis cinerea. Thus, broad-spectrum disease resistance of a plant can be generated without the constitutive synthesis of a transgene product.  相似文献   
79.
Summary Leaf and bark structure of a birch clone (Betula pendula Roth) continuously exposed to charcoal-filtered air or charcoal-filtered air plus ozone (0.05, 0.075, 0.1 l 1-1) was investigated throughout one growing season. Increasing ozone dose influenced leaf differentiation by reducing leaf area and increasing inner leaf air space, density of cells developing into stomata, scales and hairs. When approximately the same ozone dose had been reached, macroscopical and microscopical symptoms appeared irrespective of the ozone concentration used during treatment. Structural decline began in mesophyll cells around stomatal cavities (droplet-like exudates on the cell walls), continued with disintegration of the cytoplasma and ended in cell collapse. Epidermal cells showed shrinkage of the mucilaginous layer (related to water loss). Their collapse marked the final stage of leaf decline. When subsidiary cells collapsed, guard cells passively opened for a transitory period before collapsing and closing. With increasing ozone dose starch remained accumulated along the small leaf veins and in guard cells. IIK-positive grains were formed in the epidermal cells. This contrasted with the senescent leaves, where starch was entirely retranslocated. Injury symptoms in stem and petiole proceeded from the epidermis to the cambium. Reduced tissue area indicated reduced cambial activity. In plants grown in filtered air and transferred into ozone on 20 August, injury symptoms developed faster than in leaves formed in the presence of ozone. Results are discussed with regard to O3-caused acclimation and injury mechanisms.  相似文献   
80.
In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号