首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   71篇
  2023年   7篇
  2022年   8篇
  2021年   23篇
  2020年   12篇
  2019年   7篇
  2018年   23篇
  2017年   15篇
  2016年   31篇
  2015年   56篇
  2014年   67篇
  2013年   69篇
  2012年   83篇
  2011年   71篇
  2010年   48篇
  2009年   35篇
  2008年   50篇
  2007年   49篇
  2006年   40篇
  2005年   39篇
  2004年   25篇
  2003年   29篇
  2002年   19篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
排序方式: 共有834条查询结果,搜索用时 15 毫秒
781.
Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.  相似文献   
782.
Immunomodulation strategies are crucial for several biomedical applications. However, the immune system is highly heterogeneous and its functional responses to infections remains elusive. Indeed, the characterization of immune response particularities to different pathogens is needed to identify immunomodulatory candidates. To address this issue, we compiled a comprehensive map of functional immune cell states of mouse in response to 12 pathogens. To create this atlas, we developed a single-cell-based computational method that partitions heterogeneous cell types into functionally distinct states and simultaneously identifies modules of functionally relevant genes characterizing them. We identified 295 functional states using 114 datasets of six immune cell types, creating a Catalogus Immune Muris. As a result, we found common as well as pathogen-specific functional states and experimentally characterized the function of an unknown macrophage cell state that modulates the response to Salmonella Typhimurium infection. Thus, we expect our Catalogus Immune Muris to be an important resource for studies aiming at discovering new immunomodulatory candidates.Subject terms: Immunology, Cell death and immune response  相似文献   
783.

Background  

A commercial biotyping system (Taxa Profile™, Merlin Diagnostika) testing the metabolization of various substrates by bacteria was used to determine if a set of phenotypic features will allow the identification of members of the genus Brucella and their differentiation into species and biovars.  相似文献   
784.

Background  

Association mapping is receiving considerable attention in plant genetics for its potential to fine map quantitative trait loci (QTL), validate candidate genes, and identify alleles of interest. In the present study association mapping in barley (Hordeum vulgare L.) is investigated by associating DNA polymorphisms with variation in grain quality traits, plant height, and flowering time to gain further understanding of gene functions involved in the control of these traits. We focused on the four loci BLZ1, BLZ2, BPBF and HvGAMYB that play a role in the regulation of B-hordein expression, the major fraction of the barley storage protein. The association was tested in a collection of 224 spring barley accessions using a two-stage mixed model approach.  相似文献   
785.
BACKGROUND: The reconstruction of biological processes and human activities during the last glacial cycle relies mainly on data from biological remains. Highly abundant tissues, such as wood, are candidates for a genetic analysis of past populations. While well-authenticated DNA has now been recovered from various fossil remains, the final 'proof' is still missing for wood, despite some promising studies. SCOPE: The goal of this study was to determine if ancient wood can be analysed routinely in studies of archaeology and palaeogenetics. An experiment was designed which included blind testing, independent replicates, extensive contamination controls and rigorous statistical tests. Ten samples of ancient wood from major European forest tree genera were analysed with plastid DNA markers. CONCLUSIONS: Authentic DNA was retrieved from wood samples up to 1,000 years of age. A new tool for real-time vegetation history and archaeology is ready to use.  相似文献   
786.
We present a range-wide synthesis of our own research and related work on the complex postglacial history of Abies alba Mill. It is based on macroremains, fossil pollen records as well as on different genetic markers. The geographic distribution of genetic lineages and allele frequencies together with the fossil records confirm multiple refugia with at least three of them being sources for the Holocene range expansion into Central Europe, representing so-called effective refugia. One is located in the northern Apennines. A long-term refugium in the southern Balkans contributes to northward expansion with a branch along the Carpathians in the East and the Dinaric Alps in the West. Furthermore, new allozyme data indicate a third effective refugium in the northern or western Balkans, respectively. Using different genetic marker categories the differentiation of A. alba populations could be attributed to different time scales. A separation of maternal lineages took place in previous glacial cycles of the Quaternary, while a second pattern of genetic differentiation is the result of isolation processes during the last glaciation and subsequent gene flow after range expansion. Suture and introgression zones of refugial gene pools were clearly recognised. The patterns of genetic variation and genetic diversity spanning between rear and leading edges of the present range are discussed for evolutionary implications and conservation strategies.  相似文献   
787.
788.
Rats are commonly used animals for laboratory experiments and many experiments require general anesthesia. However, the lack of published and reproducible intravenous anesthesia protocols for rats results in unnecessary animal use to establish new anesthesia techniques across institutions. We therefore developed an anesthesia protocol with propofol, ketamine, and rocuronium for mechanically ventilated rats, and evaluated vital parameters and plasma concentrations. 15 male Sprague-Dawley rats underwent inhalation induction with sevoflurane and tracheal, venous and arterial cannulation. After established venous access, sevoflurane was substituted by propofol and ketamine (ketofol). Rocuronium was added under mechanical ventilation for 7 h. Drug dosages were stepwise reduced to prevent accumulation. All animals survived the observation period and showed adequate depth of anesthesia. Mean arterial pressure and heart rate remained within normal ranges. Median propofol plasma concentrations remained stable: 1, 4, 7 h: 2.0 (interquartile range (IQR): 1.8–2.2), 2.1 (1.8–2.2), 1.8 (1.6–2.1) µg/ml, whereas median ketamine concentrations slightly differed after 7 h compared to 1 h: 1, 4, 7 h: 3.7 (IQR: 3.5–4.5), 3.8 (3.3–4.1), 3.8 (3.0–4.1) µg/ml. Median rocuronium plasma concentrations were lower after 4 and 7 h compared to 1 h: 1, 4, 7 h: 3.9 (IQR: 3.5–4.9), 3.2 (2.7–3.3), 3.0 (2.4–3.4) µg/ml. Our anesthesia protocol provides stable and reliable anesthesia in mechanically ventilated rats for several hours.  相似文献   
789.
Constitutive activation of cyclin-dependent kinases (CDKs) or arginine auxotrophy are hallmarks of Glioblastoma multiforme (GBM). The latter metabolic defect renders tumor cells vulnerable to arginine-depleting substances, such as arginine deiminase from Streptococcus pyogenes (SpyADI). Previously, we confirmed the susceptibility of patient-derived GBM cells towards SpyADI as well as CDK inhibitors (CDKis). To improve therapeutic effects, we here applied a combined approach based on SpyADI and CDKis (dinaciclib, abemaciclib). Three arginine-auxotrophic patient-derived GBM lines with different molecular characteristics were cultured in 2D and 3D and effects of this combined SpyADI/CDKi approach were analyzed in-depth. All CDKi/SpyADI combinations yielded synergistic antitumoral effects, especially when given sequentially (SEQ), i.e., CDKi in first-line and most pronounced in the 3D models. SEQ application demonstrated impaired cell proliferation, invasiveness, and viability. Mitochondrial impairment was demonstrated by increasing mitochondrial membrane potential and decreasing oxygen consumption rate and extracellular acidification rate after SpyADI/abemaciclib monotherapy or its combination regimens. The combined treatment even induced autophagy in target cells (abemaciclib/SpyADI > dinaciclib/SpyADI). By contrast, the unfolded protein response and p53/p21 induced senescence played a minor role. Transmission electron microscopy confirmed damaged mitochondria and endoplasmic reticulum together with increased vacuolization under CDKi mono- and combination therapy. SEQ-abemaciclib/SpyADI treatment suppressed the DSB repair system via NHEJ and HR, whereas SEQ-dinaciclib/SpyADI treatment increased γ-H2AX accumulation and induced Rad51/Ku80. The latter combination also activated the stress sensor GADD45 and β-catenin antagonist AXIN2 and induced expression changes of genes involved in cellular/cytoskeletal integrity. This study highlights the strong antitumoral potential of a combined arginine deprivation and CDK inhibition approach via complex effects on mitochondrial dysfunction, invasiveness as well as DNA-damage response. This provides a good starting point for further in vitro and in vivo proof-of-concept studies to move forward with this strategy.Subject terms: CNS cancer, DNA damage and repair, Cell death

The complex effects of combined CDki/SPyADI application on arginine-auxotrophic glioblastoma multiforme cells. CDki/SPyADI combination therapy impairs cell proliferation, invasiveness, gene expression, induces mitochondrial impairment, and vacuole formation. Abemaciclib-SPyADI-treatment suppresses DNA repair, dinaciclib-SpyADI-treatment enhances γ-H2AX accumulation and activates the stress sensor GADD45 and β-catenin antagonist AXIN2. Both CDKi/SpyADI combinations significantly boost cell death.  相似文献   
790.
The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming Bacillus spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different Bacillus spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号