首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   759篇
  免费   71篇
  2023年   7篇
  2022年   4篇
  2021年   23篇
  2020年   12篇
  2019年   7篇
  2018年   23篇
  2017年   15篇
  2016年   31篇
  2015年   56篇
  2014年   67篇
  2013年   69篇
  2012年   83篇
  2011年   71篇
  2010年   48篇
  2009年   35篇
  2008年   50篇
  2007年   49篇
  2006年   40篇
  2005年   39篇
  2004年   25篇
  2003年   29篇
  2002年   19篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
排序方式: 共有830条查询结果,搜索用时 468 毫秒
771.
As drivers of global change, biological invasions have fundamental ecological consequences. However, it remains unclear how invasive plant effects on resident animals vary across ecosystems, animal classes, and functional groups. We performed a comprehensive meta‐analysis covering 198 field and laboratory studies reporting a total of 3624 observations of invasive plant effects on animals. Invasive plants had reducing (56%) or neutral (44%) effects on animal abundance, diversity, fitness, and ecosystem function across different ecosystems, animal classes, and feeding types while we could not find any increasing effect. Most importantly, we found that invasive plants reduced overall animal abundance, diversity and fitness. However, this significant overall effect was contingent on ecosystems, taxa, and feeding types of animals. Decreasing effects of invasive plants were most evident in riparian ecosystems, possibly because frequent disturbance facilitates more intense plant invasions compared to other ecosystem types. In accordance with their immediate reliance on plants for food, invasive plant effects were strongest on herbivores. Regarding taxonomic groups, birds and insects were most strongly affected. In insects, this may be explained by their high frequency of herbivory, while birds demonstrate that invasive plant effects can also cascade up to secondary consumers. Since data on impacts of invasive plants are rather limited for many animal groups in most ecosystems, we argue for overcoming gaps in knowledge and for a more differentiated discussion on effects of invasive plant on native fauna.  相似文献   
772.
773.
Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression.

A comparative genomics study of nine Paramecium species reveals successful invasion of genes by transposable elements in their germline genomes, showing that the internal eliminated sequences (IESs) followed an evolutionary trajectory remarkably similar to that of spliceosomal introns.  相似文献   
774.
Tubifex tubifex are obligate invertebrate hosts in the life cycle of Myxobolus cerebralis, the myxozoan parasite that causes whirling disease in salmonid fishes. This exotic parasite is established to varying degrees across Oregon’s Columbia River system (Pacific Northwest, USA) and characteristics of local T. tubifex populations likely play a role in the pattern of disease occurrence. To better understand these patterns, we collected T. tubifex from three Oregon river basins (Willamette, Deschutes, and Grande Ronde), determined their genotype (mitochondrial 16S rDNA lineage and RAPD genotype) and exposed 10 different populations to M. cerebralis in the laboratory. Four mt lineages were identified: I, III, V and VI. Lineage III was found in all river basins but dominated both central and eastern sites. The RAPD assay further divided these lineages into geographic sub-populations; no RAPD genotype was common to all basins. There was a significant difference in prevalence of infection and level of parasite production among the populations we exposed to M. cerebralis that was attributed to genotypic composition. Only lineage III worms released actinospores and only populations dominated by this lineage amplified the parasite. These populations had the lowest survival, however, the lineage dominant before exposure remained dominant despite the high prevalence of infection. The distribution and infection dynamics of susceptible T. tubifex throughout Oregon may contribute to the differences in M. cerebralis occurrence; our studies further support the influence of oligochaete genotypes on the manifestation of whirling disease in salmonid populations.  相似文献   
775.
The chemotactic migration of phagocytes to sites of infection, guided by gradients of microbial molecules, plays a key role in the first line of host defence. Bacteria are distinguished from eukaryotes by initiation of protein synthesis with formyl methionine. Synthetic formylated peptides (FPs) have been shown to be chemotactic for phagocytes, leading to the concept of FPs as pathogen-associated molecular patterns (PAMPs). However, it remains unclear whether FPs are major chemoattractants released by bacteria and whether further chemoattractants are produced. A Staphylococcus aureus mutant whose formyltransferase gene was inactivated (Deltafmt) produced no FPs and the in vitro and in vivo ability of Deltafmt culture supernatants to recruit neutrophils was considerably reduced compared with those of the parental strain. However, some chemotactic activity was retained, indicating that bacteria produce also unknown, non-FP chemoattractants. The activity of these novel PAMPs was sensitive to pertussis toxin but insensitive to the formyl peptide receptor inhibitor CHIPS. Deltafmt culture supernatants caused reduced calcium ion fluxes and reduced CD11b upregulation in neutrophils compared with wild-type supernatants. These data demonstrate an important role of FPs in innate immunity against bacterial infections and indicate that host chemotaxis receptors recognize a larger set of bacterial molecules than previously thought.  相似文献   
776.
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection.  相似文献   
777.
778.
Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.  相似文献   
779.
Immunomodulation strategies are crucial for several biomedical applications. However, the immune system is highly heterogeneous and its functional responses to infections remains elusive. Indeed, the characterization of immune response particularities to different pathogens is needed to identify immunomodulatory candidates. To address this issue, we compiled a comprehensive map of functional immune cell states of mouse in response to 12 pathogens. To create this atlas, we developed a single-cell-based computational method that partitions heterogeneous cell types into functionally distinct states and simultaneously identifies modules of functionally relevant genes characterizing them. We identified 295 functional states using 114 datasets of six immune cell types, creating a Catalogus Immune Muris. As a result, we found common as well as pathogen-specific functional states and experimentally characterized the function of an unknown macrophage cell state that modulates the response to Salmonella Typhimurium infection. Thus, we expect our Catalogus Immune Muris to be an important resource for studies aiming at discovering new immunomodulatory candidates.Subject terms: Immunology, Cell death and immune response  相似文献   
780.

Background  

A commercial biotyping system (Taxa Profile™, Merlin Diagnostika) testing the metabolization of various substrates by bacteria was used to determine if a set of phenotypic features will allow the identification of members of the genus Brucella and their differentiation into species and biovars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号