全文获取类型
收费全文 | 781篇 |
免费 | 73篇 |
专业分类
854篇 |
出版年
2024年 | 2篇 |
2023年 | 10篇 |
2022年 | 19篇 |
2021年 | 23篇 |
2020年 | 12篇 |
2019年 | 7篇 |
2018年 | 23篇 |
2017年 | 15篇 |
2016年 | 31篇 |
2015年 | 56篇 |
2014年 | 67篇 |
2013年 | 69篇 |
2012年 | 84篇 |
2011年 | 72篇 |
2010年 | 48篇 |
2009年 | 36篇 |
2008年 | 51篇 |
2007年 | 49篇 |
2006年 | 40篇 |
2005年 | 39篇 |
2004年 | 25篇 |
2003年 | 29篇 |
2002年 | 19篇 |
2001年 | 6篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1989年 | 1篇 |
排序方式: 共有854条查询结果,搜索用时 15 毫秒
801.
802.
803.
804.
Escrevente C Morais VA Keller S Soares CM Altevogt P Costa J 《Biochimica et biophysica acta》2008,1780(6):905-913
A disintegrin and metalloprotease 10 (ADAM10) is a type I transmembrane glycoprotein with four potential N-glycosylation sites (N267, N278, N439 and N551), that cleaves several plasma membrane proteins. In this work, ADAM10 was found to contain high-mannose and complex-type glycans. Individual N-glycosylation site mutants S269A, T280A, S441A, T553A were constructed, and results indicated that all sites were occupied. T280A was found to accumulate in the endoplasmic reticulum as the non-processed precursor of the enzyme. Furthermore, it exhibited only residual levels of metalloprotease activity in vivo towards the L1 cell adhesion molecule, as well as in vitro, using a ProTNF-alpha peptide as substrate. S441A showed increased ADAM10 susceptibility to proteolysis. Mutation of N267, N439 and N551 did not completely abolish enzyme activity, however, reduced levels were found. ADAM10 is sorted into secretory vesicles, the exosomes. Here, a fraction of ADAM10 from exosomes was found to contain more processed N-linked glycans than the cellular enzyme. In conclusion, N-glycosylation is crucial for ADAM10 processing and resistance to proteolysis, and results suggest that it is required for full-enzyme activity. 相似文献
805.
Lichenysins are surface-active lipopeptides with antibiotic properties produced nonribosomally by several strains of Bacillus licheniformis. Here, we report the cloning and sequencing of an entire 26.6-kb lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Three large open reading frames coding for peptide synthetases, designated licA, licB (three modules each), and licC (one module), could be detected, followed by a gene, licTE, coding for a thioesterase-like protein. The domain structure of the seven identified modules, which resembles that of the surfactin synthetases SrfA-A to -C, showed two epimerization domains attached to the third and sixth modules. The substrate specificity of the first, fifth, and seventh recombinant adenylation domains of LicA to -C (cloned and expressed in Escherichia coli) was determined to be Gln, Asp, and Ile (with minor Val and Leu substitutions), respectively. Therefore, we suppose that the identified biosynthesis operon is responsible for the production of a lichenysin variant with the primary amino acid sequence l-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile, with minor Leu and Val substitutions at the seventh position.Many strains of Bacillus are known to produce lipopeptides with remarkable surface-active properties (11). The most prominent of these powerful lipopeptides is surfactin from Bacillus subtilis (1). Surfactin is an acylated cyclic heptapeptide that reduces the surface tension of water from 72 to 27 mN m−1 even in a concentration below 0.05% and shows some antibacterial and antifungal activities (1). Some B. subtilis strains are also known to produce other, structurally related lipoheptapeptides (Table (Table1),1), like iturin (32, 34) and bacillomycin (3, 27, 30), or the lipodecapeptides fengycin (50) and plipastatin (29).
Open in a separate windowaFA, β-hydroxy fatty acid. The β-hydroxy group forms an ester bond with the carboxy group of the C-terminal amino acid. bFA, β-hydroxy fatty acid. The β-hydroxy group forms an ester bond with the carboxy group of Asp5. cFA, β-amino fatty acid. The β-amino group forms a peptide bond with the carboxy group of the C-terminal amino acid. dOnly the following combinations of amino acid 1 and 5 are allowed: Gln-Asp or Glu-Asn. eWhere an alternative amino acid may be present in a structure, the alternative is also presented. In addition to B. subtilis, several strains of Bacillus licheniformis have been described as producing the lipopeptide lichenysin (14, 17, 23, 26, 51). Lichenysins can be grouped under the general sequence l-Glx–l-Leu–d-Leu–l-Val–l-Asx–d-Leu–l-Ile/Leu/Val (Table (Table1).1). The first amino acid is connected to a β-hydroxyl fatty acid, and the carboxy-terminal amino acid forms a lactone ring to the β-OH group of the lipophilic part of the molecule. In contrast to the lipopeptide surfactin, lichenysins seem to be synthesized during growth under aerobic and anaerobic conditions (16, 51). The isolation of lichenysins from cells growing on liquid mineral salt medium on glucose or sucrose basic has been studied intensively. Antimicrobial properties and the ability to reduce the surface tension of water have also been described (14, 17, 26, 51). The structural elucidation of the compounds revealed slight differences, depending on the producer strain. Various distributions of branched and linear fatty acid moieties of diverse lengths and amino acid variations in three defined positions have been identified (Table (Table11).In contrast to the well-defined methods for isolation and structural characterization of lichenysins, little is known about the biosynthetic mechanisms of lichenysin production. The structural similarity of lichenysins and surfactin suggests that the peptide moiety is produced nonribosomally by multifunctional peptide synthetases (7, 13, 25, 49, 53). Peptide synthetases from bacterial and fungal sources describe an alternative route in peptide bond formation in addition to the ubiquitous ribosomal pathway. Here, large multienzyme complexes affect the ordered recognition, activation, and linking of amino acids by utilizing the thiotemplate mechanism (19, 24, 25). According to this model, peptide synthetases activate their substrate amino acids as aminoacyl adenylates by ATP hydrolysis. These unstable intermediates are subsequently transferred to a covalently enzyme-bound 4′-phosphopantetheinyl cofactor as thioesters. The thioesterified amino acids are then integrated into the peptide product through a stepwise elongation by a series of transpeptidations directed from the amino terminals to the carboxy terminals. Peptide synthetases have not only awakened interest because of their mechanistic features; many of the nonribosomally processed peptide products also possess important biological and medical properties.In this report we describe the identification and characterization of a putative lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Cloning and sequencing of the entire lic operon (26.6 kb) revealed three genes, licA, licB, and licC, with structural patterns common to peptide synthetases and a gene designated licTE, which codes for a putative thioesterase. The modular organization of the sequenced genes resembles the requirements for the biosynthesis of the heptapeptide lichenysin. Based on the arrangement of the seven identified modules and the tested substrate specificities, we propose that the identified genes are involved in the nonribosomal synthesis of the portion of the lichenysin peptide with the primary sequence l-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile (with minor Val and Leu substitutions). 相似文献
TABLE 1
Lipoheptapeptide antibiotics of Bacillus spp.Lipopeptide | Organism | Structure | Reference |
---|---|---|---|
Lichenysin A | B. licheniformis | FAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asn-D-Leu-L-Ile | 51, 52 |
Lichenysin B | FAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu | 23, 26 | |
Lichenysin C | FAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Ile | 17 | |
Lichenysin D | FAa-L-Gln-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Ile | This work | |
Surfactant 86 | B. licheniformis | FAa-L-Glxd-L-Leu-D-Leu-L-Val-L-Asxd-D-Leu-L-Ilee | 14, 15 |
L-Val | |||
Surfactin | B. subtilis | FAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu | 1, 7, 49 |
Esperin | B. subtilis | FAb-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leue | 45 |
L-Val | |||
Iturin A | B. subtilis | FAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Ser | 32 |
Iturin C | FAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asne-L-Asne | 34 | |
D-Ser-L-Thr | |||
Bacillomycin L | B. subtilis | FAc-L-Asp-D-Tyr-D-Asn-L-Ser-L-Gln-D-Proe-L-Thr | 3 |
D-Ser- | |||
Bacillomycin D | FAc-L-Asp-D-Tyr-D-Asn-L-Pro-L-Glu-D-Ser-L-Thr | 30, 31 | |
Bacillomycin F | FAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Thr | 27 |
806.
Timmer AM Kristian SA Datta V Jeng A Gillen CM Walker MJ Beall B Nizet V 《Molecular microbiology》2006,62(1):15-25
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection. 相似文献
807.
The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing 总被引:8,自引:0,他引:8
The low-density lipoprotein receptor-related protein (LRP) has recently been implicated in numerous intracellular signaling functions, as well as in Alzheimer's disease pathogenesis. Studies have shown that the beta-amyloid precursor protein (APP) interacts with LRP and that this association may impact the production of amyloid beta-protein (Abeta). In this report, we provide evidence that LRP regulates trafficking of intracellular proteins independently of its lipoprotein receptor functions. We show that in the absence of LRP, Abeta production, APP secretion, APP internalization, turnover of full-length APP and stability of APP C-terminal fragments are affected. Importantly, these changes are not APP isoform dependent. Using deletion constructs, the critical region in LRP that modulates APP processing was mapped to a seven peptide domain around the second NPXY domain (residues 4504-4510). Therefore, we propose a model by which LRP functionally modulates APP processing, including those steps critical for Abeta production, through interactions of the cytosolic domains. 相似文献
808.
Martens S 《Genome biology》2002,3(8):reports4025.1-reports40253
A report on the Cologne Spring Meeting 'Immunity', Cologne, Germany, 13-15 March 2002. 相似文献
809.
Lohmüller T Wenzler D Hagemann S Kiess W Peters C Dandekar T Reinheckel T 《Biological chemistry》2003,384(6):899-909
Identification of relevant substrates is essential for elucidation of in vivo functions of peptidases. The recent availability of the complete genome sequences of many eukaryotic organisms holds the promise of identifying specific peptidase substrates by systematic proteome analyses in combination with computer-based screening of genome databases. Currently available proteomics and bioinformatics tools are not sufficient for reliable endopeptidase substrate predictions. To address these shortcomings the bioinformatics tool 'PEPS' (Prediction of Endopeptidase Substrates) has been developed and is presented here. PEPS uses individual rule-based endopeptidase cleavage site scoring matrices (CSSM). The efficiency of PEPS in predicting putative caspase 3, cathepsin B and cathepsin L cleavage sites is demonstrated in comparison to established algorithms. Mortalin, a member of the heat shock protein family HSP70, was identified by PEPS as a putative cathepsin L substrate. Comparative proteome analyses of cathepsin L-deficient and wild-type mouse fibroblasts showed that mortalin is enriched in the absence of cathepsin L. These results indicate that CSSM/PEPS can correctly predict relevant peptidase substrates. 相似文献
810.
Signaling through a Novel Domain of gp130 Mediates Cell Proliferation and Activation of Hck and Erk Kinases 下载免费PDF全文
Michael Schaeffer Michaela Schneiderbauer Sascha Weidler Rosrio Tavares Markus Warmuth Gabriele de Vos Michael Hallek 《Molecular and cellular biology》2001,21(23):8068-8081
Interleukin-6 (IL-6) induces the activation of the Src family kinase Hck, which is associated with the IL-6 receptor beta-chain, gp130. Here we describe the identification of an "acidic" domain comprising amino acids 771 to 811 of gp130 as a binding region for Hck, which mediates proliferative signaling. The deletion of this region of gp130 (i.e., in deletion mutant d771-811) resulted in a significant reduction of Hck kinase activity and cell proliferation upon stimulation of gp130 compared to wild-type gp130. In addition, d771-811 disrupted the growth factor-stimulated activation of Erk and the dephosphorylation of Pyk2. Based on these findings, we propose a novel, acidic domain of gp130, which is responsible for the activation of Hck, Erk, and Pyk2 and signals cell proliferation upon growth factor stimulation. 相似文献