首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4443篇
  免费   296篇
  2022年   21篇
  2021年   45篇
  2020年   21篇
  2019年   33篇
  2018年   47篇
  2017年   39篇
  2016年   61篇
  2015年   91篇
  2014年   127篇
  2013年   222篇
  2012年   191篇
  2011年   194篇
  2010年   124篇
  2009年   117篇
  2008年   164篇
  2007年   201篇
  2006年   191篇
  2005年   183篇
  2004年   200篇
  2003年   202篇
  2002年   197篇
  2001年   189篇
  2000年   204篇
  1999年   156篇
  1998年   73篇
  1997年   68篇
  1996年   56篇
  1995年   43篇
  1994年   40篇
  1993年   34篇
  1992年   84篇
  1991年   105篇
  1990年   96篇
  1989年   95篇
  1988年   81篇
  1987年   82篇
  1986年   77篇
  1985年   78篇
  1984年   60篇
  1983年   63篇
  1982年   34篇
  1981年   23篇
  1979年   41篇
  1978年   26篇
  1977年   30篇
  1976年   21篇
  1975年   21篇
  1974年   24篇
  1973年   30篇
  1970年   17篇
排序方式: 共有4739条查询结果,搜索用时 15 毫秒
211.
Norovirus infection cause epidemic nonbacterial gastroenteritis in patients. The immune mechanisms responsible for the clearance of virus are not completely understood. We examined whether NKT cells are effective against norovirus infection using CD1d KO mice. The body weights of 4-weeks-old CD1d KO mice that were infected with murine norovirus-S7 (MNV-S7) were significantly lower than those of non-infected CD1d KO mice. On the other hand, the body weights of infected WT mice were comparable to those of non-infected WT mice. Correspondingly, CD1d KO mice had an almost 1000-fold higher MNV-S7 burden in the intestine after infection in comparison to WT mice. The mechanism responsible for the insufficient MNV-S7 clearance in CD1d KO mice was attributed to reduced IFN-γ production early during MNV-S7 infection. In addition, the markedly impaired IL-4 production in CD1d KO mice resulted in an impaired MNV-S7-specific secretory IgA production after MNV-S7 infection which is associated with mucosal immunity. Thus, the present results provide evidence that NKT cells play an essential role in MNV-S7 clearance.  相似文献   
212.
213.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2.  相似文献   
214.
215.
216.
Most α-synuclein (α-syn) deposited in Lewy bodies, the pathological hallmark of Parkinson disease (PD), is phosphorylated at Ser-129. However, the physiological and pathological roles of this modification are unclear. Here we investigate the effects of Ser-129 phosphorylation on dopamine (DA) uptake in dopaminergic SH-SY5Y cells expressing α-syn. Subcellular fractionation of small interfering RNA (siRNA)–treated cells shows that G protein–coupled receptor kinase 3 (GRK3), GRK5, GRK6, and casein kinase 2 (CK2) contribute to Ser-129 phosphorylation of membrane-associated α-syn, whereas cytosolic α-syn is phosphorylated exclusively by CK2. Expression of wild-type α-syn increases DA uptake, and this effect is diminished by introducing the S129A mutation into α-syn. However, wild-type and S129A α-syn equally increase the cell surface expression of dopamine transporter (DAT) in SH-SY5Y cells and nonneuronal HEK293 cells. In addition, siRNA-mediated knockdown of GRK5 or GRK6 significantly attenuates DA uptake without altering DAT cell surface expression, whereas knockdown of CK2 has no effect on uptake. Taken together, our results demonstrate that membrane-associated α-syn enhances DA uptake capacity of DAT by GRKs-mediated Ser-129 phosphorylation, suggesting that α-syn modulates intracellular DA levels with no functional redundancy in Ser-129 phosphorylation between GRKs and CK2.  相似文献   
217.
Abstract

Synthesis of 5-carbon-substituted 1-β-d-ribofuranosylimidazole-4-carboxamides are described. Treatment of 5-iodo derivative 8 with methyl acrylate in the presence of palladium catalyst gave (E)-5-(2-carbomethoxyvinyl)-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazole-4-carboxamide (9), followed by appropriate manipulations to afford various 5-carbon-substituted imidazole derivatives 1–7. The antileukemic activities of these imidazole nucleosides are also described.

  相似文献   
218.
Ants build a trail that leads to a new location when they move their colony. The trail’s traffic flows smoothly, regardless of the density on the trail. To the best of our knowledge, such a phenomenon has been reported only for ant species. The trail’s capacity is known as trail traffic flow. In this paper, we propose a probabilistic model of trail traffic flow, which overcomes some inadequacies of the kinetic model previously proposed in the literature. Our model answers a question unsolved by the previous model, namely, how many worker ants form such a density-independent trail. We focus on ants’ responses to mutual contacts that involve individuals in trail formation. We propose a model in which contact frequency predicts the number of worker ants that form a trail. We verify that our model’s estimates match the empirical data that ant experts reported in the literature. In modeling and evaluation, we discuss an intelligent ant species, the house-hunting ant Temnothorax albipennis, which is popular among the ant experts.  相似文献   
219.

Background

Monocarboxylate transporters (MCTs) transport monocarboxylates such as lactate, pyruvate and ketone bodies. These transporters are very attractive therapeutic targets in cancer. Elucidations of the functions and structures of MCTs is necessary for the development of effective medicine which targeting these proteins. However, in comparison with MCT1, there is little information on location of the function moiety of MCT4 and which constituent amino acids govern the transport function of MCT4. The aim of the present work was to determine the molecular mechanism of L-lactate transport via hMCT4.

Experimental approach

Transport of L-lactate via hMCT4 was determined by using hMCT4 cRNA-injected Xenopus laevis oocytes. hMCT4 mediated L-lactate uptake in oocytes was measured in the absence and presence of chemical modification agents and 4,4′-diisothiocyanostilbene-2,2′-disulphonate (DIDS). In addition, L-lactate uptake was measured by hMCT4 arginine mutants. Immunohistochemistry studies revealed the localization of hMCT4.

Results

In hMCT4-expressing oocytes, treatment with phenylglyoxal (PGO), a compound specific for arginine residues, completely abolished the transport activity of hMCT4, although this abolishment was prevented by the presence of L-lactate. On the other hand, chemical modifications except for PGO treatment had no effect on the transport activity of hMCT4. The transporter has six conserved arginine residues, two in the transmembrane-spanning domains (TMDs) and four in the intracellular loops. In hMCT4-R278 mutants, the uptake of L-lactate is void of any transport activity without the alteration of hMCT4 localization.

Conclusions

Our results suggest that Arg-278 in TMD8 is a critical residue involved in substrate, L-lactate recognition by hMCT4.  相似文献   
220.

Background/Aims

The Japanese National Hospital Organization evidence-based medicine (EBM) Study group for Adverse effects of Corticosteroid therapy (J-NHOSAC) is a Japanese hospital-based cohort study investigating the safety of the initial use of glucocorticoids (GCs) in patients with newly diagnosed autoimmune diseases. Using the J-NHOSAC registry, the purpose of this observational study is to analyse the rates, characteristics and associated risk factors of intracellular infections in patients with newly diagnosed autoimmune diseases who were initially treated with GCs.

Methodology/Principal Findings

A total 604 patients with newly diagnosed autoimmune diseases treated with GCs were enrolled in this registry between April 2007 and March 2009. Cox proportional-hazards regression was used to determine independent risk factors for serious intracellular infections with covariates including sex, age, co-morbidity, laboratory data, use of immunosuppressants and dose of GCs. Survival was analysed according to the Kaplan-Meier method and was assessed by the log-rank test. There were 127 serious infections, including 43 intracellular infections, during 1105.8 patient-years of follow-up. The 43 serious intracellular infections resulted in 8 deaths. After adjustment for covariates, diabetes (Odds ratio [OR]: 2.5, 95% confidence interval [95% CI] 1.1–5.9), lymphocytopenia (≦1000/μl, OR: 2.5, 95% CI 1.2–5.2) and use of high-dose (≧30 mg/day) GCs (OR: 2.4, 95% CI 1.1–5.3) increased the risk of intracellular infections. Survival curves showed lower intracellular infection-free survival rate in patients with diabetes, lymphocytopaenia and high-dose GCs treatments.

Conclusions/Significance

Patients with newly diagnosed autoimmune diseases were at high risk of developing intracellular infection during initial treatment with GCs. Our findings provide background data on the risk of intracellular infections of patients with autoimmune diseases. Clinicians showed remain vigilant for intracellular infections in patients with autoimmune diseases who are treated with GCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号