首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   62篇
  1093篇
  2022年   6篇
  2021年   17篇
  2020年   4篇
  2019年   12篇
  2018年   16篇
  2017年   8篇
  2016年   22篇
  2015年   39篇
  2014年   48篇
  2013年   66篇
  2012年   61篇
  2011年   67篇
  2010年   40篇
  2009年   27篇
  2008年   61篇
  2007年   51篇
  2006年   81篇
  2005年   66篇
  2004年   61篇
  2003年   65篇
  2002年   55篇
  2001年   12篇
  2000年   8篇
  1999年   12篇
  1998年   14篇
  1997年   7篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   3篇
  1990年   10篇
  1989年   4篇
  1988年   10篇
  1987年   11篇
  1986年   6篇
  1985年   7篇
  1984年   9篇
  1983年   12篇
  1982年   9篇
  1981年   6篇
  1980年   13篇
  1979年   5篇
  1978年   9篇
  1977年   4篇
  1975年   4篇
  1973年   4篇
  1969年   2篇
  1950年   1篇
排序方式: 共有1093条查询结果,搜索用时 15 毫秒
41.
Abstract: Our previous studies showed that the concentration of the β subunit of nerve growth factor (β-NGF) in nervous tissues is higher in male than in female mice. To identify the brain regions that are affected by androgens, the amounts of β-NGF protein and its mRNAs were measured in male, female, and castrated male CD-1 mice and testicular feminization mice at 3–4 months of age. Among tissues examined, the hypophysis of males contained the highest average concentration of β-NGF protein. In most regions of the brain, individual levels were more variable in males than in females. However, after the castration, such variations in β-NGF levels disappeared. Average levels of β-NGF protein in males were higher in the cerebellum (eightfold higher), olfactory bulb (12-fold higher), hypothalamus (sixfold higher), and hypophysis (72-fold higher) than thope in corresponding regions of females. No significant differences were observed in levels of β-NGF protein in the hippocampus, cerebral cortex, striatum, septum, and brainstem. The castration of male mice caused a reduction in levels of β-NGF protein in the hypothalamus and hypophysis, but not in the cerebellum and olfactory bulb, to the femgle levels. The concentrations of β-NGF protein in testicular feminization mice were similar to those in female CD-1 mice in all regions. The concentrations of mRNA for β-NGF in the olfactory bulb and hypophysis from males were higher than those from females. By contrast, northern blots showed no remarkable differences in the amounts of brain-derived neurotrophic factor and neurotrophin-3 between the two sexes. Thus, in some regions of the brain, the production of β-NGF appears to be regulated by testosterone, but the regulatory mechanisms do not appear to be simple. Our present results indicate that the binding of testosterone to its receptor is an important step in the regulation of the level of β-NGF in these region.  相似文献   
42.
Summary The translation activity of mRNA coding for argininosuccinate synthetase in total RNA extracted from the liver of three patients with quantitative-type citrullinemia was determined using a cell-free translation system. In two patients, the hepatic content of the enzyme was about 20% of the control value, whereas translatable mRNA level for the enzyme was similar to or slightly lower than those of control livers. In the third patient, the enzyme content was about 50% of the control value, and mRNA activity for the enzyme was low normal. These results indicate that at least in the first two patients, the decrease in the enzyme protein is due either to increased degradation of the enzyme or to decreased translation in the patient's liver.  相似文献   
43.
The RIG-I like receptor (RLR) comprises three homologues: RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma differentiation-associated gene 5), and LGP2 (laboratory of genetics and physiology 2). Each RLR senses different viral infections by recognizing replicating viral RNA in the cytoplasm. The RLR contains a conserved C-terminal domain (CTD), which is responsible for the binding specificity to the viral RNAs, including double-stranded RNA (dsRNA) and 5′-triphosphated single-stranded RNA (5′ppp-ssRNA). Here, the solution structures of the MDA5 and LGP2 CTD domains were solved by NMR and compared with those of RIG-I CTD. The CTD domains each have a similar fold and a similar basic surface but there is the distinct structural feature of a RNA binding loop; The LGP2 and RIG-I CTD domains have a large basic surface, one bank of which is formed by the RNA binding loop. MDA5 also has a large basic surface that is extensively flat due to open conformation of the RNA binding loop. The NMR chemical shift perturbation study showed that dsRNA and 5′ppp-ssRNA are bound to the basic surface of LGP2 CTD, whereas dsRNA is bound to the basic surface of MDA5 CTD but much more weakly, indicating that the conformation of the RNA binding loop is responsible for the sensitivity to dsRNA and 5′ppp-ssRNA. Mutation study of the basic surface and the RNA binding loop supports the conclusion from the structure studies. Thus, the CTD is responsible for the binding affinity to the viral RNAs.  相似文献   
44.
Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.  相似文献   
45.
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.  相似文献   
46.
Mycoplasma fermentans has been suspected as one of the causative pathogenic microorganisms of rheumatoid arthritis (RA) however, the pathogenic mechanism is still unclear. We, previously, reported that glycolipid-antigens (GGPL-I and III) are the major antigens of M. fermentans. Monoclonal antibody against the GGPL-III could detect the existence of the GGPL-III antigens in synovial tissues from RA patients. GGPL-III antigens were detected in 38.1% (32/84) of RA patient’s tissues, but not in osteoarthritis (OA) and normal synovial tissues. Immunoelectron microscopy revealed that a part of GGPL-III antigens are located at endoplasmic reticulum. GGPL-III significantly induced TNF-α and IL-6 production from peripheral blood mononulear cells, and also proliferation of synovial fibroblasts. Further study is necessary to prove that M. fermentans is a causative microorganism of RA; however, the new mechanisms of disease pathogenesis provides hope for the development of effective and safe immunotherapeutic strategies based on the lipid-antigen, GGPL-III, in the near future.  相似文献   
47.
Demand for banked bone allografts is increasing in Japan; however, there are too few bone banks and the bone bank network is not well-established. One reason for this was lack of funding for banks. Bone banks had to bear all material expenses of banked bone allografts themselves because this was not designated a covered expense. In December 2004, the Japanese government started a new “Advanced Medical Treatment” administration system which allowed an approved institution to charge the expense of authorized advanced medical treatments directly to patients. The treatment named “Cryopreserved allogenic bone and ligamentous tissue retrieved from cadaveric donor” was approved as an advanced medical treatment in March 2007. We present the calculation method and the expense per implantation of a banked bone allograft from a cadaveric donor under this treatment and raise issues which affect this advanced medical treatment and remain to be resolved in the Japanese orthopaedic field.  相似文献   
48.
To characterize the ability of bifidobacteria to affect the production of macrophage-derived cytokines, a murine macrophage-like cell line, J774.1, was cultured in the presence of 27 strains of heat-inactivated bifidobacteria. Bifidobacterium adolescentis and B. longum, known as adult-type bifidobacteria, induced significantly more pro-inflammatory cytokine secretion, IL-12 and TNF-alpha, by J774.1 cells, than did the infant-type bifidobacteria, B. bifidum, B. breve, and B. infantis (P<0.01). In contrast, B. adolescentis did not stimulate the production of anti-inflammatory IL-10 from J774.1 cells as the other tested bacteria did. The results suggest that the adult-type bifidobacteria, especially B. adolescentis, may be more potent to amplify but less able to down-regulate the inflammatory response.  相似文献   
49.
Tom7 is a component of the translocase of the outer mitochondrial membrane (TOM) and assembles into a general import pore complex that translocates preproteins into mitochondria. We have identified the human Tom7 homolog and characterized its import and assembly into the mammalian TOM complex. Tom7 is imported into mitochondria in a nucleotide-independent manner and is anchored to the outer membrane with its C terminus facing the intermembrane space. Unlike studies in fungi, we found that human Tom7 assembles into an approximately 120-kDa import intermediate in HeLa cell mitochondria. To detect subunits within this complex, we employed a novel supershift analysis whereby mitochondria containing newly imported Tom7 were incubated with antibodies specific for individual TOM components prior to separation by blue native electrophoresis. We found that the 120-kDa complex contains Tom40 and lacks receptor components. This intermediate can be chased to the stable approximately 380-kDa mammalian TOM complex that additionally contains Tom22. Overexpression of Tom22 in HeLa cells results in the rapid assembly of Tom7 into the 380-kDa complex indicating that Tom22 is rate-limiting for TOM complex formation. These results indicate that the levels of Tom22 within mitochondria dictate the assembly of TOM complexes and hence may regulate its biogenesis.  相似文献   
50.
Female Ascotis selenaria (Geometridae) moths use 3,4-epoxy-(Z,Z)-6,9-nonadecadiene, which is synthesized from linolenic acid, as the main component of their sex pheromone. While the use of dietary linolenic or linoleic fatty acid derivatives as sex pheromone components has been observed in moth species belonging to a few families including Geometridae, the majority of moths use derivatives of a common saturated fatty acid, palmitic acid, as their sex pheromone components. We attempted to gain insight into the differentiation of pheromone biosynthetic pathways in geometrids by analyzing the desaturase genes expressed in the pheromone gland of A. selenaria. We demonstrated that a Δ11-desaturase-like gene (Asdesat1) was specifically expressed in the pheromone gland of A. selenaria in spite of the absence of a desaturation step in the pheromone biosynthetic pathway in this species. Further analysis revealed that the presumed transmembrane domains were degenerated in Asdesat1. Phylogenetic analysis demonstrated that Asdesat1 anciently diverged from the lineage of Δ11-desaturases, which are currently widely used in the biosynthesis of sex pheromones by moths. These results suggest that an ancestral Δ11-desaturase became dysfunctional in A. selenaria after a shift in pheromone biosynthetic pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号