首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   21篇
  国内免费   1篇
  2023年   5篇
  2022年   9篇
  2021年   19篇
  2020年   7篇
  2019年   8篇
  2018年   12篇
  2017年   17篇
  2016年   14篇
  2015年   26篇
  2014年   16篇
  2013年   37篇
  2012年   41篇
  2011年   42篇
  2010年   19篇
  2009年   13篇
  2008年   23篇
  2007年   18篇
  2006年   25篇
  2005年   14篇
  2004年   11篇
  2003年   8篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有433条查询结果,搜索用时 140 毫秒
71.

Aims

Septic shock, the severe form of sepsis, is associated with development of progressive damage in multiple organs. Kidney can be injured and its functions altered by activation of coagulation, vasoactive-peptide and inflammatory processes in sepsis. Endothelin (ET)-1, a potent vasoconstrictor, is implicated in the pathogenesis of sepsis and its complications. Protease-activated receptors (PARs) are shown to play an important role in the interplay between inflammation and coagulation. We examined the time-dependent alterations of ET-1 and inflammatory cytokine, such as tumor necrosis factor (TNF)-α in kidney tissue in lipopolysaccharide (LPS)-induced septic rat model and the effects of PAR2 blocking peptide on the LPS-induced elevations of renal ET-1 and TNF-α levels.

Main methods

Male Wistar rats at 8 weeks of age were administered with either saline solution or LPS at different time points (1, 3, 6 and 10 h). Additionally, we treated LPS-administered rats with PAR2 blocking peptide for 3 h to assess whether blockade of PAR2 has a regulatory role on the ET-1 level in septic kidney.

Key findings

An increase in ET-1 peptide level was observed in kidney tissue after LPS administration time-dependently. Levels of renal TNF-α peaked (around 12-fold) at 1 h of sepsis. Interestingly, PAR2 blocking peptide normalized the LPS-induced elevations of renal ET-1 and TNF-α levels.

Significance

The present study reveals a distinct chronological expression of ET-1 and TNF-α in LPS-administered renal tissues and that blockade of PAR2 may play a crucial role in treating renal injury, via normalization of inflammation, coagulation and vaso-active peptide.  相似文献   
72.
BACKGROUNDImportance of androgen receptor (AR) as an independent prognostic marker in Pakistani women with breast cancer (BCa) remains unexplored. Our aim was to identify the expression and potential prognostic value of AR, its upstream regulator (pAkt) and target gene (pPTEN) in invasive BCa.METHODSThis study used a cohort of 200 Pakistani women with invasive BCa diagnosed during 2002-2011. Expression of AR, pAkt and pPTEN was determined on formalin fixed paraffin embedded tissue sections by immunohistochemistry. The association of AR, pAkt and pPTEN with clinicopathological parameters was determined. Survival analyses were undertaken on patients with ≥ 5 years of follow-up (n = 82).RESULTSExpression of AR, pAkt and pPTEN was observed in 47.5%, 81.3% and 50.6% of patients, respectively. AR-expressing tumors were low or intermediate in grade (P < .001) and expressed ER (P = .002) and PR (P = .001). Patients with AR+ tumors had significantly higher OS (Mean OS = 10.2 ± 0.465 years) compared to patients with AR? tumors (Mean OS = 5.8 ± 0.348 years) (P = .047). Furthermore, AR-positivity was associated with improved OS in patients receiving endocrine therapy (P = .020). Patients with AR+ /pAkt+ /pPTEN? tumors, had increased OS (Mean OS = 7.1 ± 0.535 years) compared to patients with AR?/pAkt+/pPTEN? tumors (Mean OS = 5.1 ± 0.738 years).CONCLUSIONAR-expressing tumors are frequently characterized by low or intermediate grade tumors, expressing ER and PR. In addition, expression of AR, pAkt and pPTEN, could be considered in prognostication of patients with invasive BCa.  相似文献   
73.

Rationale

Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens.

Methods

To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin.

Results

Mice treated topically with a STAT3 inhibitor (Stattic) developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3.

Conclusions

Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus.  相似文献   
74.
An alkaline thermotolerant lipase of Bacillus coagulans BTS1 was successively purified by ammonium sulfate precipitation and DEAE anion exchange chromatography. The purified lipase immobilized in alginate beads showed an optimal activity at pH 7.5 and 55 degrees C. A pH of 5.0 or 10.0 completely quenched the activity of immobilized lipase. The alginate-bound lipase retained its activity following exposure to most of the organic solvents including amines, alkanes and alcohols. Chloride salt of Al3+, Co2+, Mg2+ and NH4+ modulated the lipase activity of alginate-immobilized enzyme. The alginate entrapped lipase showed a preferentially high activity towards p-nitrophenyl palmitate (C: 16) and activity of matrix increased following exposure to SDS. Moreover, the immobilized lipase retained more than 50% of its activity after 3rd cycle of reuse.  相似文献   
75.
76.
77.
N-acyl-phosphatidylethanolamine (NAPE) is known to be a precursor for various bioactive N-acylethanolamines including the endocannabinoid anandamide. NAPE is produced in mammals through the transfer of an acyl chain from certain glycerophospholipids to phosphatidylethanolamine (PE) by Ca2+-dependent or -independent N-acyltransferases. The ε isoform of mouse cytosolic phospholipase A2 (cPLA2ε) was recently identified as a Ca2+-dependent N-acyltransferase (Ca-NAT). In the present study, we first showed that two isoforms of human cPLA2ε function as Ca-NAT. We next purified both mouse recombinant cPLA2ε and its two human orthologues to examine their catalytic properties. The enzyme absolutely required Ca2+ for its activity and the activity was enhanced by phosphatidylserine (PS). PS enhanced the activity 25-fold in the presence of 1?mM CaCl2 and lowered the EC50 value of Ca2+ >8-fold. Using a PS probe, we showed that cPLA2ε largely co-localizes with PS in plasma membrane and organelles involved in the endocytic pathway, further supporting the interaction of cPLA2ε with PS in living cells. Finally, we found that the Ca2+-ionophore ionomycin increased [14C]NAPE levels >10-fold in [14C]ethanolamine-labeled cPLA2ε-expressing cells while phospholipase A/acyltransferase-1, acting as a Ca2+-independent N-acyltransferase, was insensitive to ionomycin for full activity. In conclusion, PS potently stimulated the Ca2+-dependent activity and human cPLA2ε isoforms also functioned as Ca-NAT.  相似文献   
78.
Owing to white meat production Labeo rohita have vast economic importance, but its population has been reduced drastically in River Chenab due to pollution. Atomic absorption spectrophotometry showed a merciless toxicity level of Cd, Cu, Mn, Zn, Pb, Cr, Sn and Hg. Comet assay results indicated significant (p?<?.05) DNA fragmentation in Labeo rohita as 42.21?±?2.06%, 31.26?±?2.41% and 21.84?±?2.21% DNA in comet tail, tail moment as 17.71?±?1.79, 10.30?±?1.78 and 7.81?±?1.56, olive moment as 13.58?±?1.306, 8.10?±?1.04 and 5.88?±?0.06, respectively, from three different polluted sites on the river. Micronucleus assay showed similar findings of single micronucleus induction (MN) as 50.00?±?6.30‰, double MN 14.40?±?2.56‰, while nuclear abnormalities (NA) were found as 150.00?±?2.92‰. These higher frequencies of MN induction and NA were found to be the cause of reduction of 96% of the population of this fish species in an experimental area of the River Chenab. This fish species has been found near extinction through the length of the river Chenab and few specimens in rainy seasons if restored by flood, may die in sugarcane mill season. Due to sweeping extinction Labeo rohita showed the highest sensitivity for pollution and could be used as bioindicator and DNA fragmentation in this column feeder fish species as a biomarker of the pollution load in freshwater bodies.  相似文献   
79.
16S rRNA gene-targeted probes were designed for the identification of corynebacteria at the genus and species levels. The genus-specific probe hybridized all clinically important members of the genus Corynebacterium and could distinguish them from other coryneform bacteria and phylogenetically related high G + C% gram-positive bacteria, including Actinomyces, Rhodococcus, Gordona, Nocardia, Streptomyces, Brevibacterium and Mycobacterium. The species-specific probes for C. jeikeium and C. diphtheriae could differentiate these two species from other members of this genus. The probes were used to select corynebacteria among gram-positive clinical isolates which had been tentatively identified as corynebacteria by biochemical tests. We screened 59 strains with the genus-specific probe; 51 strains hybridized to the genus-specific probe, 8 did not. Of the 51 strains that hybridized to the genus-specific probe, 1 hybridized to the C. diphtheriae species probe and 13 hybridized to the C. jeikeium species probe. The 8 strains that did not hybridize to the genus probe were further characterized by analyzing cell wall diaminopimelic acid and partial 16S rRNA sequencing. The results indicated that these strains were distributed in the genera Arthrobacter and Brevibacterium.  相似文献   
80.
DNA barcoding, microarray technology and next generation sequencing have emerged as promising tools for the elucidation of plant genetic diversity and its conservation. They are proving to be immensely helpful in authenticating the useful medicinal plants for herbal drug preparations. These newer versions of molecular markers utilize short genetic markers in the genome to characterize the organism to a particular species. This has the potential not only to classify the known and yet unknown species but also has a promising future to link the medicinally important plants according to their properties. The newer trends being followed in DNA chips and barcoding pave the way for a future with many different possibilities. Several of these possibilities might be: characterization of unknown species in a considerably less time than usual, identification of newer medicinal properties possessed by the species and also updating the data of the already existing but unnoticed properties. This can assist us to cure many different diseases and will also generate novel opportunities in medicinal drug delivery and targeting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号