首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   568篇
  免费   35篇
  国内免费   1篇
  2023年   2篇
  2022年   7篇
  2021年   16篇
  2020年   17篇
  2019年   13篇
  2018年   19篇
  2017年   12篇
  2016年   19篇
  2015年   21篇
  2014年   29篇
  2013年   40篇
  2012年   33篇
  2011年   30篇
  2010年   23篇
  2009年   24篇
  2008年   33篇
  2007年   37篇
  2006年   25篇
  2005年   35篇
  2004年   19篇
  2003年   14篇
  2002年   13篇
  2001年   14篇
  2000年   12篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   10篇
  1992年   2篇
  1991年   2篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1984年   2篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1967年   1篇
  1963年   3篇
  1962年   1篇
排序方式: 共有604条查询结果,搜索用时 31 毫秒
61.
Chikungunya virus (CHIKV) is a mosquito-transmitted Alphavirus that causes in humans an acute infection characterized by polyarthralgia, fever, myalgia, and headache. Since 2005 this virus has been responsible for an epidemic outbreak of unprecedented magnitude. By analogy with other alphaviruses, it is thought that cellular proteases are able to process the viral precursor protein E3E2 to produce the receptor-binding E2 protein that associates as a heterodimer with E1. Destabilization of the heterodimer by exposure to low pH allows viral fusion and infection. We show that among a large panel of proprotein convertases, membranous furin but also PC5B can process E3E2 from African CHIKV strains at the HRQRR(64) / ST site, whereas a CHIKV strain of Asian origin is cleaved at RRQRR(64) / SI by membranous and soluble furin, PC5A, PC5B, and PACE4 but not by PC7 or SKI-1. Using fluorogenic model peptides and recombinant convertases, we observed that the Asian strain E3E2 model peptide is cleaved most efficiently by furin and PC5A. This cleavage was also observed in CHIKV-infected cells and could be blocked by furin inhibitor decanoyl-RVKR-chloromethyl ketone. This inhibitor was compared with chloroquine for its ability to inhibit CHIKV spreading in myoblast cell cultures, a cell-type previously described as a natural target of this virus. Our results demonstrate the role of furin-like proteases in the processing of CHIKV particles and point out new approaches to inhibit this infection.  相似文献   
62.
The stability of almond β-glucosidase in five different organic media was evaluated. After 1 hour of incubation at 30°C, the enzyme retained 95, 91, 81, 74 and 56% relative activity in aqueous solutions [30% (v/v)] of dioxane, DMSO, DMF, acetone and acetonitrile, respectively. Transglucosylation involving p-nitrophenyl β-D-glucopyranoside as donor and β-1-N-acetamido-D-glucopyranose, which is a glycosylasparagine mimic, as acceptor was explored under different reaction conditions using almond βglucosidase and cloned Pichia etchellsii β-glucosidase II. The yield of disaccharides obtained in both reactions turned out to be 3%. Both enzymes catalyzed the formation of (1→3)- as well as (1→6)- regioisomeric disaccharides, the former being the major product in cloned β-glucosidase II reaction while the latter predominated in the almond enzyme catalyzed reaction. Use of β-1-N-acetamido-D-mannopyranose and β-1-N-acetamido-2-acetamido-2-deoxy-D-glucopyranose as acceptors in almond β-glucosidase catalyzed reactions, however, did not afford any disaccharide products revealing the high acceptor specificity of this enzyme.  相似文献   
63.
Influenza virus hemagglutinin (HA), a homotrimeric integral membrane glycoprotein essential for viral infection, is engaged in two biological functions: recognition of target cells' receptor proteins and fusion of viral and endosomal membranes, both requiring substantial conformational flexibility from the part of the glycoprotein. The different modes of collective motions underlying the functional mobility/adaptability of the protein are determined in the present study using an extension of the Gaussian network model (GNM) to treat concerted anisotropic motions. We determine the molecular mechanisms that may underlie HA function, along with the structural regions or residues whose mutations are expected to impede function. Good agreement between theoretically predicted fluctuations of individual residues and corresponding x-ray crystallographic temperature factors is found, which lends support to the GNM elucidation of the conformational dynamics of HA by focusing upon a subset of dominant modes. The lowest frequency mode indicates a global torsion of the HA trimer about its longitudinal axis, accompanied by a substantial mobility at the viral membrane connection. This mode is proposed to constitute the dominant molecular mechanism for the translocation and aggregation of HAs, and for the opening and dilation of the fusion pore. The second and third collective modes indicate a global bending, allowing for a large lateral surface exposure, which is likely to facilitate the close association of the viral and endosomal membranes before pore opening. The analysis of kinetically hot residues, in contrast, reveals a localization of energy centered around the HA2 residue Asp112, which apparently triggers the solvent exposure of the fusion peptide.  相似文献   
64.
Amino acid sequences of nucleocapsid proteins are mostly conserved among different rhabdoviruses. The protein plays a common functional role in different RNA viruses by enwrapping the viral genomic RNA in an RNase-resistant form. Upon expression of the nucleocapsid protein alone in COS cells and in bacteria, it forms large insoluble aggregates. In this work, we have reported for the first time the full-length cloning of the N gene of Chandipura virus and its expression in Escherichia coli in a soluble monomeric form and purification using nonionic detergents. The biological activity of the soluble recombinant protein has been tested, and it was found to possess efficient RNA-binding ability. The state of aggregation of the recombinant protein was monitored using light scattering. In the absence of nonionic detergents, it formed large aggregates. Aggregation was significantly reduced in the presence of osmolytes such as d-sorbitol. Aggregate formation was suppressed in the presence of another viral product, phosphoprotein P, in a chaperone-like manner. Both the osmolyte and phosphoprotein P also suppressed aggregation to a great extent during refolding from a guanidine hydrochloride-denatured form. The function of the phosphoprotein and osmolyte appears to be synergistic to keep the N-protein in a soluble biologically competent form in virus-infected cells.  相似文献   
65.
InthecourseofrevisingthegenusPrimulaLinn .(Primulaceae)intheHimalayasofIndianre gion ,theauthorscameacrossasetofcollectionsidentifiedasP .involucrataWall.gatheredbythepioneerHimalayantravellers,merelywrittenondeterminavitslipsasP .involucrataWall.formaschiz…  相似文献   
66.
67.
68.
The present study demonstrated the combined effect of 24-epibrassinolide and salicylic acid against lead (Pb, 0.25, 0.50, and 0.75 mM) toxicity in Brassica juncea seedlings. Various parameters including water status, metal uptake, total water- and lipid-soluble antioxidants, metal chelator content (total thiols, protein-bound thiols, and non-protein-bound thiols), phenolic compounds (flavonoids, anthocyanins, and polyphenols), and organic acids were studied in 10-day-old seedlings. Dry matter content and the heavy metal tolerance index were reduced by 42.24 and 52.3%, respectively, in response to Pb treatment. Metal uptake, metal-chelating compounds, phenolic compounds, and organic acids were increased in Pb-treated seedlings as compared to control plants. The treatment of Pb-stressed seedlings with combination of EBL and SA resulted in enhancement of heavy metal tolerance index by 40.07%, water content by 1.84%, and relative water content by 23.45%. The total water- and lipid-soluble antioxidants were enhanced by 21.01 and 2.21%, respectively. In contrast, a significant decline in dry weight, metal uptake, thiol, and polyphenol contents was observed following the application of 24-epibrassinolide and salicylic acid. These observations indicate that Pb treatment has an adverse effect on B. juncea seedlings. However, co-application of 24-epibrassinolide and salicylic acid mitigates the negative effects of Pb, by lowering Pb metal uptake and enhancing the heavy metal tolerance index, water content, relative water content, antioxidative capacities, phenolic content, and organic acid levels.  相似文献   
69.
Mungbean yellow mosaic India virus (MYMIV)—the causal agent of the yellow mosaic disease is responsible for severe damage of crops that are of great economic importance. In the current study, we explored the process of MYMIV infection and its natural resistance by analysing the expression of early and late viral genes at different time points in the leaves of resistant and susceptible Vigna mungo plants. Accordingly, we have periodically evaluated several biochemical parameters commonly associated with oxidative status of resistant and susceptible V. mungo plants during MYMIV infection. Our study revealed that accumulation levels of the early as well as late expressed genes of MYMIV were low and high in the resistant and susceptible plants, respectively; whereas membrane stability index (MSI) exhibited an opposite response. Moreover, a decrease in the malondialdehyde levels along with an increase in the activities/levels of different antioxidant enzymes, total phenol and H2O2 was noted during the early stages of infection in the resistant plants. Such observations argue in favour of strong defensive capability of the resistant plants in restricting the accumulation of viral RNA and generation of harmful free radicals within the studied tissue. Collectively, it appears that obstruction of viral invasion in plant cell wall, restriction in viral DNA replication, and early onset of antioxidant defense responses altogether might be responsible for MYMIV natural resistance. Such information is helpful in understanding the pathogenesis of MYMIV infection and its resistance in V. mungo and other economically important crops.  相似文献   
70.
The thermoacidophilic Acidianus strain DS80 displays versatility in its energy metabolism and can grow autotrophically and heterotrophically with elemental sulfur (S°), ferric iron (Fe3+) or oxygen (O2) as electron acceptors. Here, we show that autotrophic and heterotrophic growth with S° as the electron acceptor is obligately dependent on hydrogen (H2) as electron donor; organic substrates such as acetate can only serve as a carbon source. In contrast, organic substrates such as acetate can serve as electron donor and carbon source for Fe3+ or O2 grown cells. During growth on S° or Fe3+ with H2 as an electron donor, the amount of CO2 assimilated into biomass decreased when cultures were provided with acetate. The addition of CO2 to cultures decreased the amount of acetate mineralized and assimilated and increased cell production in H2/Fe3+ grown cells but had no effect on H2/S° grown cells. In acetate/Fe3+ grown cells, the presence of H2 decreased the amount of acetate mineralized as CO2 in cultures compared to those without H2. These results indicate that electron acceptor availability constrains the variety of carbon sources used by this strain. Addition of H2 to cultures overcomes this limitation and alters heterotrophic metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号