首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   26篇
  280篇
  2022年   7篇
  2021年   14篇
  2020年   7篇
  2019年   9篇
  2018年   5篇
  2017年   6篇
  2016年   10篇
  2015年   14篇
  2014年   16篇
  2013年   14篇
  2012年   14篇
  2011年   23篇
  2010年   10篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   13篇
  2005年   14篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   14篇
  2000年   13篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
排序方式: 共有280条查询结果,搜索用时 0 毫秒
51.
52.
Spores of pathogenic Clostridium perfringens and Clostridium difficile must germinate in the food vehicle and/or host's intestinal tract to cause disease. In this work, we examined the germination response of spores of C. perfringens and C. difficile upon incubation with cultured human epithelial cell lines (Caco-2, HeLa and HT-29). C. perfringens spores of various sources were able to germinate to different extents; while spores of a non-food-borne isolate germinated very well, spores of food-borne and animal isolates germinated poorly in human epithelial cells. In contrast, no detectable spore germination (i.e., loss of spore heat resistance) was observed upon incubation of C. difficile spores with epithelial cells; instead, there was a significant (p?相似文献   
53.
54.
55.

Background

Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment.

Methodology/Principal Findings

In this work, we provide evidence that C. difficile spores are well suited to survive the host’s innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells’ ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1.

Conclusions/Significance

These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.  相似文献   
56.

Background

Pterygium is a common ocular surface disease characterized by fibrovascular invasion of the cornea and is sight-threatening due to astigmatism, tear film disturbance, or occlusion of the visual axis. However, the mechanisms for formation and post-surgical recurrence of pterygium are not understood, and a valid animal model does not exist. Here, we investigated the possible mechanisms of pterygium pathogenesis and recurrence.

Methods

First we performed a genome wide expression analysis (human Affymetrix Genechip, >22000 genes) with principal component analysis and clustering techniques, and validated expression of key molecules with PCR. The controls for this study were the un-involved conjunctival tissue of the same eye obtained during the surgical resection of the lesions. Interesting molecules were further investigated with immunohistochemistry, Western blots, and comparison with tear proteins from pterygium patients.

Results

Principal component analysis in pterygium indicated a signature of matrix-related structural proteins, including fibronectin-1 (both splice-forms), collagen-1A2, keratin-12 and small proline rich protein-1. Immunofluorescence showed strong expression of keratin-6A in all layers, especially the superficial layers, of pterygium epithelium, but absent in the control, with up-regulation and nuclear accumulation of the cell adhesion molecule CD24 in the pterygium epithelium. Western blot shows increased protein expression of beta-microseminoprotein, a protein up-regulated in human cutaneous squamous cell carcinoma. Gene products of 22 up-regulated genes in pterygium have also been found by us in human tears using nano-electrospray-liquid chromatography/mass spectrometry after pterygium surgery. Recurrent disease was associated with up-regulation of sialophorin, a negative regulator of cell adhesion, and never in mitosis a-5, known to be involved in cell motility.

Conclusion

Aberrant wound healing is therefore a key process in this disease, and strategies in wound remodeling may be appropriate in halting pterygium or its recurrence. For patients demonstrating a profile of 'recurrence', it may be necessary to manage as a poorer prognostic case and perhaps, more adjunctive treatment after resection of the primary lesion.  相似文献   
57.
Reaction of Cu(ClO4)2·6H2O, SRaaiNR′ (1-alkyl-2-[(o-thioalkyl)phenylazo]imidazole) and NH4SCN (1:1:2 mol ratio) affords distorted square pyramidal, [CuII(SRaaiNR′)(SCN)2] (3) compound while identical reaction with [Cu(MeCN)4](ClO4) yields -SCN- bridged coordination polymer, [CuI(SRaaiNR′)(SCN)]n (4). These two redox states [CuII and CuI] are interconvertible; reduction of [CuII(SRaaiNR′)(SCN)2] by ascorbic acid yields [CuI(SRaaiNR′)(SCN)]n while the oxidation of [CuI(SRaaiNR′)(SCN)]n by H2O2 in presence of excess NH4SCN affords [CuII(SRaaiNR′)(SCN)2]. They are structurally confirmed by single crystal X-ray diffraction study. Cyclic voltammogram of the complexes show Cu(II)/Cu(I) redox couple at ∼0.4 V and azo reductions at negative to SCE. UV light irradiation in MeCN solution of [CuI(SRaaiNR′)(SCN)]n (4) show trans-to-cis isomerisation of coordinated azoimidazole. The reverse transformation, cis-to-trans, is very slow with visible light irradiation while the process is thermally accessible. Quantum yields (?t→c) of trans-to-cis isomerisation are calculated and free ligands show higher ? than their Cu(I) complexes. The activation energy (Ea) of cis-to-trans isomerisation is calculated by controlled temperature experiment. Copper(II) complexes, 3, do not show photochromism. DFT and TDDFT calculation of representative complexes have been used to determine the composition and energy of molecular levels and results have been used to explain the solution spectra, photochromism and redox properties of the complexes.  相似文献   
58.
M Sarker  F M Chen 《Biochemistry》1989,28(16):6651-6657
Comparative DNA equilibrium binding studies with mithramycin (MTR) and ethidium bromide in the presence and in the absence of second drugs were investigated by spectral titrations. Unusual curvatures (in contrast to those due to neighbor exclusion or anticooperativity) are found in the Scatchard plots of MTR-DNA titrations in the presence of netropsin, a minor-groove binder. Parallel studies with ethidium bromide indicate that although the presence of netropsin significantly reduces the binding ability of ethidium, no unusually curved Scatchard plots are obtained. The unusual curvature exhibited by the Scatchard plots of MTR titrations in the presence of netropsin indicates that the binding of netropsin greatly affects the MTR binding to DNA and can be simulated by an explicit incorporation of the second drug-DNA interaction in the binding formalism. Since netropsin is a minor-groove binder, its interference with the binding of MTR is in accord with the notion that MTR also binds at this groove. The observation of negligible effects on the DNA binding ability of MTR in the presence of either a major-groove or a phosphate group binder lends further support to this conclusion. Consistent with its guanine specificity, studies with synthetic polynucleotides suggest that MTR exhibits negligible affinity for poly(dA-dT).poly(dA-dT) or poly(dA).poly(dT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
59.
Bio-surveillance of environmental pollution is increasingly gaining ground, as it is felt that if and when standardized, it might prove to be a long term cost-effective alternative technology. In aquatic media, for monitoring heavy metal pollutants, which are mostly xenobiotic, a number of hydrophytes have been tried by earlier researchers. These hydrophytes have shown to have varying degree of accumulation capacities, which could be preferably utilized in scavenging the toxicants such as Pb(II) among others. The screening criteria of such a suitable scavenger also take into account the ease of harvesting and handling the biomass on a large scale. Here comes the use of a macrophyte, and its potentiality of forming metallo-protein complexes (phytochelatin) to hold back the diffused metal, Pb(II), ions. In the present investigation, the experimental test system was the common tropical aquatic weed, Salvinia rotundifolia, Willd. It has shown a high promise for Pb(II) removal from synthetic as well as industrial (battery producing unit) wastewater. Within a span of 4 days, 50?gm (wet weight) of the plant was capable of removing about 85–95% of Pb(II) from 1.50 litres of both kinds of wastewaters containing 0.65–1.8?ppm of the metal at an optimum pH of 5.5. The uptake potentials were examined under various combinations of pH, plant weight, and metal concentration. It is suggested that the high uptake and recovery of Pb(II) by Salvinia Rotundifolia can be efficiently used as a possible future biotechnological solution for industrial wastewater treatment in a tropical and developing country like India. In the present study, a reduction of biomass weight from 80 to 72.3 (in mg dry wt/g of fresh wt.) was noted, while an increase of tissue conductivity from 161 to 181.5 in micro-mhos/cm was observed. This reflects the potential injurious effect of heavy metals to the cell membrane of the biomass. These changes, when standardized, are likely to serve as a suitable `biomonitoring' device for aquatic metal pollution. In the present case, effluent quality of a battery manufacturing unit, India was evaluated. Even though there is an existing effluent treatment plant (ETP) of the industry, the effluent from the balancing tank (discharge point) was found to contain high concentrations of lead (0.657–1.021?mg/l), BOD (470?mg/l) and COD (680?mg/l) as against State Pollution Control Board's standards of 0.1?mg/l, 30?mg/l, and 250?mg/l respectively. In the present investigation, an attempt has also been made to treat wastewater from the balancing tank of the existing effluent treatment plant (ETP) of the above-stated industrial unit to bring down the concentrations of Pb(II), BOD (5 days), and COD within the permissible limits prescribed by the regulatory board. The treatment was done in a laboratory-scale oxidation pond, cultured with Salvinia rotundifolia, of 85 litres capacity using a hydraulic retention period of about 10 days.  相似文献   
60.
Preparative RP-HPLC analysis of a methanol extract of the seeds of Centaurea cyanus afforded four indole alkaloids: moschamine, cis-moschamine, centcyamine and cis-centcyamine, the latter two being new natural products. Structures of these compounds were elucidated by comprehensive spectroscopic analyses. General toxicity of the isolates was determined by Brine Shrimp Lethality bioassay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号