首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   19篇
  国内免费   2篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   8篇
  2020年   4篇
  2019年   8篇
  2018年   16篇
  2017年   11篇
  2016年   16篇
  2015年   23篇
  2014年   17篇
  2013年   43篇
  2012年   42篇
  2011年   36篇
  2010年   26篇
  2009年   14篇
  2008年   37篇
  2007年   27篇
  2006年   21篇
  2005年   17篇
  2004年   15篇
  2003年   13篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1957年   1篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
131.
132.
133.
DNA origami provides a versatile platform for conducting ‘architecture-function’ analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.  相似文献   
134.
In silico analysis followed by experimental validation leads us to propose that the predicted protein All0195 of Anabaena sp. PCC7120 showing enhanced expression under sodium arsenate (Na2HAsO4) stress belongs to the thioredoxin superfamily with structural similarity to bacterial arsenate reductase. The All0195 protein demonstrated C-X-TC-X-K, NTSG-X2-YR, and D-X2-L-X-KRP as functional motifs that show similarity to seven known bacterial arsenate reductase family protein homologs with Cys, Arg, and Pro as conserved residues. In view of physicochemical properties, such as aliphatic index, ratio of Glu?+?Lys to Gln?+?His, and secondary structure, it was evident that All0195 was also a thermostable protein. The predicted three-dimensional structure on molecular docking with arsenate oxyanion ( $ HAsO_4^{- 2 } $ ) revealed its interaction with conserved Cys residue as also known for other bacterial arsenate reductase. In silico derived properties were experimentally attested by cloning and heterologous expression of all0195. Furthermore, this protein functionally complemented the arsenate reductase-deficient sodium arsenate-hypersensitive phenotype of Escherichia coli strainWC3110 (ΔarsC) and depicted arsenate reductase activity on purification. In view of the above properties, All0195 appears to be a new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120.  相似文献   
135.
Toxoplasma gondii ADF (TgADF) belongs to a functional subtype characterized by strong G-actin sequestering activity and low F-actin severing activity. Among the characterized ADF/cofilin proteins, TgADF has the shortest length and is missing a C-terminal helix implicated in F-actin binding. In order to understand its characteristic properties, we have determined the solution structure of TgADF and studied its backbone dynamics from 15N-relaxation measurements. TgADF has conserved ADF/cofilin fold consisting of a central mixed β-sheet comprised of six β-strands that are partially surrounded by three α-helices and a C-terminal helical turn. The high G-actin sequestering activity of TgADF relies on highly structurally and dynamically optimized interactions between G-actin and G-actin binding surface of TgADF. The equilibrium dissociation constant for TgADF and rabbit muscle G-actin was 23.81 nM, as measured by ITC, which reflects very strong affinity of TgADF and G-actin interactions. The F-actin binding site of TgADF is partially formed, with a shortened F-loop that does not project out of the ellipsoid structure and a C-terminal helical turn in place of the C-terminal helix α4. Yet, it is more rigid than the F-actin binding site of Leishmania donovani cofilin. Experimental observations and structural features do not support the interaction of PIP2 with TgADF, and PIP2 does not affect the interaction of TgADF with G-actin. Overall, this study suggests that conformational flexibility of G-actin binding sites enhances the affinity of TgADF for G-actin, while conformational rigidity of F-actin binding sites of conventional ADF/cofilins is necessary for stable binding to F-actin.  相似文献   
136.
The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA) essential, among other functions, for the assembly and organization of the omega speckles. The nucleoplasmic omega speckles play important functions in RNA metabolism, in normal and stressed cells, by regulating availability of hnRNPs and some other RNA processing proteins. Chromatin remodelers, as well as nuclear speckles and their associated ncRNAs, are emerging as important components of gene regulatory networks, although their functional connections have remained poorly defined. Here we provide multiple lines of evidence showing that the hsrω ncRNA interacts in vivo and in vitro with ISWI, regulating its ATPase activity. Remarkably, we found that the organization of nucleoplasmic omega speckles depends on ISWI function. Our findings highlight a novel role for chromatin remodelers in organization of nucleoplasmic compartments, providing the first example of interaction between an ATP-dependent chromatin remodeler and a large ncRNA.  相似文献   
137.
Rv3619c and Rv3620c are the secretory, antigenic proteins of the ESAT-6/CFP-10 family of Mycobacterium tuberculosis H37Rv. In this article, we show that Rv3619c interacts with Rv3620c to form a 1 : 1 heterodimeric complex with a dissociation constant (K(d)) of 4.8 × 10(-7) M. The thermal unfolding of the heterodimer was completely reversible, with a T(m) of 48 °C. The comparative thermodynamics and thermal unfolding analysis of the Rv3619c-Rv3620c dimer, the ESAT-6-CFP-10 dimer and another ESAT family heterodimer, Rv0287-Rv0288, revealed that the binding strength and stability of Rv3619c-Rv3620c are relatively lower than those of the other two pairs. Molecular modeling and docking studies predict the structure of Rv3619c-Rv3620c to be similar to that of ESAT-6-CFP-10. Spectroscopic studies revealed that, in an acidic environment, Rv3619c and Rv3620c lose their secondary structure and interact weakly to form a complex with a lower helical content, indicating that Rv3619c-Rv3620c is destabilized at low pH. These results, combined with those of previous studies, suggest that unfolding of the proteins is required for dissociation of the complex and membrane binding. In the presence of membrane mimetics, the α-helical contents of Rv3619c and Rv3620 increased by 42% and 35%, respectively. In mice, the immune response against Rv3619c protein is characterized by increased levels of interferon-γ, interleukin-12 and IgG(2a) , indicating a dominant Th1 response, which is mandatory for protection against mycobacterial infection. This study therefore emphasizes the potential of Rv3619c as a subunit vaccine candidate.  相似文献   
138.
Ursolic acid (UA) is a pentacyclic triterpene naturally occurring in many plant foods. In the present study, we investigated anti-cancer activity of UA in vivo in Ehrlich ascites carcinoma (EAC) tumor. 15 × 106 EAC cells were implanted intraperitoneally (i.p., ascitic tumor) and subcutaneous (s.c., solid tumor) in Swiss albino mice. Mice with established tumors received UA i.p. at 25, 50 and 100 mg/kg bw for 14 d in ascitic and 100 mg/kg bw in solid tumor for 30 d. On day 15, blood samples were collected for hematological assessment of hemoglobin (Hb%), RBCs, WBCs and PCV. Tumor volume, cell viability, angiogenic, anti-angiogenic, anti-inflammatory factors and antioxidant parameters were determined. Immunohistochemistry analysis for VEGF, iNOS, CD31, caspase-3 and Bax were also performed. UA significantly inhibited tumor growth, cell viability, in both ascites and solid tumor model in vivo (p < 0·001). The anti-angiogenic effects were accompanied with decreased VEGF, iNOS, TNF-α and increased IL-12 levels. UA at 100 mg/kg bw dose significantly increased SOD and CAT activity (p < 0.01). GSH and TBARS were increased as compared to control group (p < 0.001). Furthermore, UA increased total RBCs, WBCs as well as Hb% significantly (p < 0.05) compared to cyclophosphamide (CP). Histopathological examination of tumor cells in the treated group demonstrated signs of apoptosis with chromatin condensation and cell shrinkage. Decreased peritoneal angiogenesis showed the anti-angiogenic potential. UA downregulated VEGF & iNOS expression whereas bax and caspase-3 expressions were upregulated suggesting drug induced tumor cell apoptosis through activating the pro-apoptotic bcl-2 family and caspase-3 and downregulation of VEGF. The present study sheds light on the potent antitumor property of the UA and can be extended further to develop therapeutic protocols for treatment of cancer.  相似文献   
139.
The new genus, Neopeplus, is proposed to accommodate two remarkable new mirine plant bug species, N. trianai, from Australia and N. dogoni, from New Guinea. External anatomy and genital structures of both sexes of N. trianai and of N. dogoni male are described. The possible phyletic relationships of the new genus are briefly analysed.  相似文献   
140.
This paper constitutes the first report on the Alr1105 of Anabaena sp. PCC7120 which functions as arsenate reductase and phosphatase and offers tolerance against oxidative and other abiotic stresses in the alr1105 transformed Escherichia coli. The bonafide of 40.8 kDa recombinant GST+Alr1105 fusion protein was confirmed by immunoblotting. The purified Alr1105 protein (mw 14.8 kDa) possessed strong arsenate reductase (Km 16.0 ± 1.2 mM and Vmax 5.6 ± 0.31 μmol min?1 mg protein?1) and phosphatase activity (Km 27.38 ± 3.1 mM and Vmax 0.077 ± 0.005 μmol min?1 mg protein?1) at an optimum temperature 37 °C and 6.5 pH. Native Alr1105 was found as a monomeric protein in contrast to its homologous Synechocystis ArsC protein. Expression of Alr1105 enhanced the arsenic tolerance in the arsenate reductase mutant E. coli WC3110 (?arsC) and rendered better growth than the wild type W3110 up to 40 mM As (V). Notwithstanding above, the recombinant E. coli strain when exposed to CdCl2, ZnSO4, NiCl2, CoCl2, CuCl2, heat, UV-B and carbofuron showed increase in growth over the wild type and mutant E. coli transformed with the empty vector. Furthermore, an enhanced growth of the recombinant E. coli in the presence of oxidative stress producing chemicals (MV, PMS and H2O2), suggested its protective role against these stresses. Appreciable expression of alr1105 gene as measured by qRT-PCR at different time points under selected stresses reconfirmed its role in stress tolerance. Thus the Alr1105 of Anabaena sp. PCC7120 functions as an arsenate reductase and possess novel properties different from the arsenate reductases known so far.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号