首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   12篇
  国内免费   2篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   6篇
  2018年   12篇
  2017年   6篇
  2016年   12篇
  2015年   18篇
  2014年   17篇
  2013年   34篇
  2012年   34篇
  2011年   27篇
  2010年   19篇
  2009年   10篇
  2008年   22篇
  2007年   17篇
  2006年   15篇
  2005年   10篇
  2004年   8篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1953年   2篇
排序方式: 共有330条查询结果,搜索用时 15 毫秒
21.
Down syndrome (DS) is one of the commonest disorders with huge medical and social cost. DS is associated with number of phenotypes including congenital heart defects, leukemia, Alzeihmer’s disease, Hirschsprung disease etc. DS individuals are affected by these phenotypes to a variable extent thus understanding the cause of this variation is a key challenge. In the present review article, we emphasize an overview of DS, DS-associated phenotypes diagnosis and management of the disease. The genes or miRNA involved in Down syndrome associated Alzheimer’s disease, congenital heart defects (AVSD), leukemia including AMKL and ALL, hypertension and Hirschprung disease are discussed in this article. Moreover, we have also reviewed various prenatal diagnostic method from karyotyping to rapid molecular methods -  MLPA, FISH, QF-PCR, PSQ, NGS and noninvasive prenatal diagnosis in detail.  相似文献   
22.
Fungal xylanases have been widely studied and various production methods have been proposed using submerged and solid-state fermentation. This class of enzyme is used to supplement cellulolytic enzyme cocktails in order to enhance the enzymatic hydrolysis of plant cell walls. The present work investigates the production of xylanase and other accessory enzymes by a recently isolated endophytic Aspergillus niger DR02 strain, using the pentose-rich liquor from hydrothermal pretreatment of sugarcane bagasse as carbon source. Batch and fed-batch submerged cultivation approaches were developed in order to minimize the toxicity of the liquor and increase enzyme production. Maximum xylanase activities obtained were 458.1 U/mL for constant fed-batch, 428.1 U/mL for exponential fed-batch, and 264.37 U/mL for pulsed fed-batch modes. The results indicated that carbon-limited fed-batch cultivation can reduce fungal catabolite repression, as well as overcome possible negative effects of toxic compounds present in the pentose-rich liquor. Enzymatic panel and mass spectrometric analyses of the fed-batch A. niger secretome showed high levels of xylanolytic enzymes (GH10, GH11, and GH62 Cazy families), together with cellobiohydrolase (G6 and GH7), β-glucosidase, β-xylosidase (GH3), and feruloyl esterase (CE1) accessory enzyme activities. The yields of glucose and xylose from enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse increased by 43.7 and 65.3%, respectively, when a commercial cellulase preparation was supplemented with the A. niger DR02 constant fed-batch enzyme complex.  相似文献   
23.
Gap junctions serve as intercellular conduits that allow the exchange of small molecular weight molecules (up to 1 kDa) including ions, metabolic precursors and second messengers. Microglia are capable of recognizing peptidoglycan (PGN) derived from the outer cell wall of Staphylococcus aureus, a prevalent CNS pathogen, and respond with the robust elaboration of numerous pro-inflammatory mediators. Based on recent reports demonstrating the ability of tumor necrosis factor-alpha and interferon-gamma to induce gap junction coupling in macrophages and microglia, it is possible that pro-inflammatory mediators released from PGN-activated microglia are capable of inducing microglial gap junction communication. In this study, we examined the effects of S. aureus-derived PGN on Cx43, the major connexin in microglial gap junction channels, and functional gap junction communication using single-cell microinjections of Lucifer yellow (LY). Exposure of primary mouse microglia to PGN led to a significant increase in Cx43 mRNA and protein expression. LY microinjection studies revealed that PGN-treated microglia were functionally coupled via gap junctions, the specificity of which was confirmed by the reversal of activation-induced dye coupling by the gap junction blocker 18-alpha-glycyrrhetinic acid. In contrast to PGN-activated microglia, unstimulated cells consistently failed to exhibit LY dye coupling. These results indicate that PGN stimulation can induce the formation of a functional microglial syncytium, suggesting that these cells may be capable of influencing neuro-inflammatory responses in the context of CNS bacterial infections through gap junction intercellular communication.  相似文献   
24.
Effects of lead (Pb) and cadmium (Cd) both alone or in combination on the binding of LH and FSH on isolated granulosa cells were studied. Granulosa cells isolated from proestrous rats were incubated (in vitro) with lead acetate and/or cadmium acetate (0.03 microM of Pb or Cd) for 1 hr. LH binding was dropped to 84% in Pb treated cells, 72.5% in Cd treated cells and 74.8% in combined metal treated cells compared to control. FSH binding dropped to 85.5% in Pb treated cells, 71.16% in Cd treated cells and 72.5% in combined metal treated cells compared to control. Activity of 17beta Hydroxy Steroid Dehydrogenase (17betaHSDH), a key steroidogenic enzyme was reduced by 52% in Cd and 37% in combined metal exposed cells whereas Pb exposed cells showed 31% reduction in the enzyme activity. Pretreatment with SH groups protectants (glutathione [GSH], dithiothretol [DTT]) and zinc caused an ameriolation in enzyme activity whereas Zn pretreatment showed an increase in gonadotropin binding in metal exposed cells. These results suggest that both Pb and Cd can cause a reduction in LH and FSH binding, which significantly alters steroid production in vitro and exerts a direct influence on granulosa cell function.  相似文献   
25.
了解敏感和抗性蚊虫的繁殖适合度对于规划和实施蚊虫防治计划具有重要意义。本研究分别将斯氏按蚊Anopheles stephensi幼虫用溴氰菊酯(AnDL)及溴氰菊酯和PBO混配制剂(1∶5) (AnDP), 或斯氏按蚊成虫用溴氰菊酯(AnDA) 进行选择后, 在实验室内检测了起源于印度德里的斯氏按蚊亲本(AnS)和抗性品系 (AnR) 的繁殖适合度的变化,从繁殖力、生育力、卵孵化率和生殖营养周期的长度等方面评价了斯氏按蚊的繁殖适合度。结果表明:与AnS品系相比, AnR品系的生殖营养周期缩短了60%~73%。与AnS品系相比, AnR品系的产卵量显著降低, 降幅达14.5%~37.9%,对溴氰菊酯抗性最强的AnDL40品系的产卵量降低得最多。这些结果说明溴氰菊酯抗性与繁殖劣势之间可能存在正相关。与亲本品系相比, AnDL40品系的卵孵化率降低了19.4%~30.9%, 进一步证实了这一相关性。在RDP品系中观察到繁殖适合度降低, 表明溴氰菊酯增效剂的选择不仅在降低溴氰菊酯抗性水平而且在降低抗性个体频率上的效率。在对溴氰菊酯几乎不具有抗性的成虫品系的选择中繁殖适合度降低, 暗示溴氰菊酯作为灭杀斯氏按蚊成虫剂的效果要好于作为杀幼虫剂的效果。这些结果提示, 通过对斯氏按蚊实施不同抗性治理策略, 种群中抗性基因型的繁殖适合度的降低可消除杂合子和抗性纯合子。  相似文献   
26.
Microcytic hypochromic anemia is a common condition in clinical practice and alpha-thalassemia has to be considered as a differential diagnosis. Molecular diagnosis of alpha-thalassemia is possible by polymerase chain reaction. The aim of this study was to evaluate the frequency of alpha-gene numbers in subjects with microcytosis. In total, 276 subjects with microcytic hypochromic anemia [MCV<80fl; MCH<27pg] were studied. These include 125 with thalassemia trait, 48 with thalassemia major, 26 with sickle-cell thalassemia, 15 with E beta-thalassemia, 40 with iron-deficiency anemia, 8 with another hemolytic anemia, and 14 patients with no definite diagnosis. Genotyping for -alpha3.7 deletion, -alpha4.2 deletion, Hb Constant Spring, and a-triplications was done with polymerase chain reaction. The overall frequency of -alpha3.7 deletion in 276 individuals is 12.7%. The calculated allele frequency for a-thalassemia is 0.09. The subgroup analysis showed that co-inheritance of a-deletion is more frequent with the sickle-cell mutation than in other groups. We were able to diagnose 1/3 of unexplained cases of microcytosis as a-thalassemia carriers. The a-gene mutation is quite common in the Indian subcontinent. Molecular genotyping of a-thalassemia helps to diagnose unexplained microcytosis, and thus prevents unnecessary iron supplementation.  相似文献   
27.
Leaves of Kalanchoe pinnata have crenate margins with each notch bearing a dormant bud competent to develop into a healthy plantlet. Leaf detachment is a common signal for inducing two contrastingly different leaf-based processes, i.e. epiphyllous bud development into plantlet and foliar senescence. To investigate differentiation of bud and its correlation, if any, with foliar senescence, thidiazuron (TDZ), having cytokinin activity and ethrel (ETH), an ethylene releasing compound, were employed. The experimental system was comprised of marginal leaf discs, each harbouring an epiphyllous bud. Most of the growth characteristics of plantlet developing from the epiphyllous bud were significantly inhibited by TDZ but promoted by ETH. The two regulators modulated senescence in a manner different for leaf discs and plantlet leaves. Thus, TDZ caused a complete retention whereas ETH a complete loss of chlorophyll in the leaf discs. In contrast, the former resulted in a complete depletion of chlorophyll from the plantlet leaves producing an albino effect, while the latter reduced it by 50% only. In combined dispensation of the two regulators, the effect of TDZ was expressed in majority of responses studied. The results presented in this investigation clearly show that the foliar processes of epiphyllous bud differentiation and senescence are interlinked as TDZ that delayed senescence inhibited epiphyllous bud differentiation and ETH that hastened senescence promoted it. A working hypothesis to interpret responsiveness of the disc-bud composite on lines of a source-sink duo, has been proposed.  相似文献   
28.
Short tandem repeats are highly polymorphic sequences of nucleotides, which are abundant in eukaryotic genome. They form approximately 3% of the total human genome and occur on average in every 10, 000 nucleotides. Due to their small dimension, low mutation, and high level of polymorphism, these markers are intensely used as important genetic markers for mapping studies, disease diagnosis, and human identity testing. In the present study allelic distribution of four autosomal short tandem repeat markers (D21S2055, D21S11, D21S1435 and D21S1411) has been analyzed in Indian population. For determination of heterogeneity and their allelic frequency QF-PCR analysis have been done. All the loci were found highly polymorphic. Marker D21S1411 was the most informative (93.6%) and D21S1435 (70.1%) was the least informative marker in Indian population.  相似文献   
29.
This study is the first to demonstrate cloning of alr0882, a hypothetical protein gene of Anabaena PCC7120, its heterologous expression in Escherichia coli strain LN29MG1655 (?uspA::Kan) and functional complementation of abiotic stress tolerance of E. coli UspA. The recombinant vector pGEX-5X-2-alr0882 was used to transform ?uspA E. coli strain. The IPTG induced expression of a 56.6 kDa GST fusion protein was visualized on SDS–PAGE and attested by immunoblotting. E. coli ?uspA strain harboring pGEX-5X-2-alr0882 when grown under carbon, nitrogen, phosphorus and sulphur limitation and abiotic stresses e.g. nalidixic acid, cycloserine, CdCl2, H2O2, UV-B, phenazine methosulphate (PMS), dinitrophenol (DNP), NaCl, heat, carbofuron and CuCl2 demonstrated about 22.6–51.6% increase in growth over the cells transformed with empty vector. Expression of alr0882 gene in mutant E. coli as measured by semi-quantitative RT-PCR at different time points under selected treatments reaffirmed its role in tolerance against stresses employed in this study. Thus the results of this study vividly demonstrated that the novel protein alr0882, although appreciably different from the known UspA of E. coli, offers tolerance to abiotic stresses hence holds potential for the development of transgenic cyanobacteria.  相似文献   
30.
Whole genome duplication leads to autopolyploidy and brings about an increase in cell size, concentration of secondary metabolites and enhanced cytosine methylation. The increased cell size offers a positive advantage to polyploids for cell-surface-related activities, but there is a differential response to change in body size across species and taxonomic groups. Although polyploidy has been very extensively studied, having genetic, ecological and evolutionary implications, there is no report that underscores the significance of native secondary metabolites vis-à-vis body size with ploidy change. To address this problem we targeted unique diploid-autotetraploid paired sets of eight diverse clones of six species of Cymbopogon- a species complex of aromatic grasses that accumulate qualitatively different monoterpene essential oils (secondary metabolite) in their vegetative biomass. Based on the qualitative composition of essential oils and the plant body size relationship between the diploid versus autotetraploid paired sets, we show that polyploidy brings about enhanced accumulation of secondary metabolites in all cases, but exerts differential effects on body size in various species. It is observed that the accumulation of alcohol-type metabolites (e.g. geraniol) does not inhibit increase in body size with ploidy change from 2× to 4× (r = 0.854, P < 0.01), but aldehyde-type metabolites (e.g. citral) appear to drastically impede body development (r = -0.895). Such a differential response may be correlated to the metabolic steps involved in the synthesis of essential oil components. When changed to tetraploidy, the progenitor diploids requiring longer metabolic steps in production of their secondary metabolites are stressed, and those having shorter metabolite routes better utilize their resources for growth and vigour. In situ immunodetection of 5-methylcytosine sites reveals enhanced DNA methylation in autopolyploids. It is underpinned that the qualitative composition of secondary metabolites found in the vegetative biomass of the progenitor diploid has a decisive bearing on the body size of the derived autotetraploids and brings about an enhancement in genome-wide cytosine methylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号