首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20113篇
  免费   1800篇
  国内免费   4篇
  2023年   80篇
  2022年   157篇
  2021年   463篇
  2020年   284篇
  2019年   371篇
  2018年   466篇
  2017年   406篇
  2016年   738篇
  2015年   1063篇
  2014年   1166篇
  2013年   1387篇
  2012年   1671篇
  2011年   1456篇
  2010年   952篇
  2009年   930篇
  2008年   1171篇
  2007年   1157篇
  2006年   1059篇
  2005年   1017篇
  2004年   958篇
  2003年   902篇
  2002年   865篇
  2001年   229篇
  2000年   175篇
  1999年   226篇
  1998年   235篇
  1997年   168篇
  1996年   139篇
  1995年   160篇
  1994年   131篇
  1993年   126篇
  1992年   131篇
  1991年   102篇
  1990年   97篇
  1989年   80篇
  1988年   94篇
  1987年   75篇
  1986年   79篇
  1985年   89篇
  1984年   99篇
  1983年   59篇
  1982年   92篇
  1981年   62篇
  1980年   68篇
  1979年   46篇
  1977年   40篇
  1975年   30篇
  1974年   39篇
  1972年   31篇
  1971年   31篇
排序方式: 共有10000条查询结果,搜索用时 640 毫秒
991.
992.
Biomaterials are already widely used in medical sciences. The field of biomaterials began to shift to produce materials able to stimulate specific cellular responses at the molecular level. The combined efforts of cell biologists, engineers, materials scientists, mathematicians, geneticists, and clinicians are now used in tissue engineering to restore, maintain, or improve tissue functions or organs. This rapidly expanding approach combines the fields of material sciences and cell biology for the molecular design of polymeric scaffolds with appropriate 3D configuration and biological responses. Future developments for new blood vessels will require improvements in technology of materials and biotechnology together with the increased knowledge of the interactions between materials, blood, and living tissues. Biomaterials represent a crucial mainstay for all these studies.  相似文献   
993.
The matrix metalloproteinases (MMP) belong to a growing family of secreted or membrane-bound (MT-MMP) enzymes that cleave protein components of the extracellular matrix and bioactive factors involved in intercellular signaling. MMP activity is counterbalanced by their four physiological inhibitors, the tissue inhibitors of MMP (TIMPs). Together, MMP and TIMP control cell-cell and cell-matrix interactions associated with physiological processes. However, the breakdown of the protease-inhibitor balance may lead to the loss of tissue homeostasis and the development of degenerative and tumorigenic processes in various tissues. The emerging idea is that the MMP/TIMP system also plays a major role in the pathology and physiology of the nervous system and that mastering MMP activity will set the basis for new and more efficient therapeutic strategies against nervous system disorders.  相似文献   
994.
A CD8+ T cell of naive phenotype has multiple career choices during its primary differentiation into an effector cell population. One of these career options is becoming a CD8low T cell. We have previously shown by in vitro studies that CD8low T cells have lost expression of CD8 surface protein and mRNA and are poorly cytolytic. In line with poor cytolytic function, CD8low T cells express low levels of perforin and granzyme B and C, mediators of the granule-exocytosis machinery. However, CD8low T cells express IFN-gamma and substantial amounts of IL-4, the signature cytokines of type 1 and type 2 T-cell polarization, respectively. Here, we argue that the CD8low phenotype is an alternative career choice for any naive CD8+ T cell during primary activation but that the probability of choosing this option is greatly enhanced by both IL-4 and strong activation conditions. CD8low T cells have downregulated CD8 alpha/beta heterodimers and no preferential CD8 alpha/alpha homodimer expression. As shown by anti-CD8 Ab blocking experiments, surface CD8 substantially contributes to the CD8 T cell's effector function (i.e. cytokine expression and cytolytic activity). The distinct effector profile of CD8low T cells gives an example of the complexity of different CD8 T cell careers during primary effector differentiation.  相似文献   
995.
OBJECTIVE: To show the effect of 7-ketocholesterol (7KC) on cellular lipid content by means of flow cytometry and the interaction of 7KC with Nile Red (NR) via ultraviolet fluorescence resonance energy transfer (FRET) excitation of NR on U937 monocytic cells by means of 2-photon excitation confocal laser scanning microscopy (CLSM). STUDY DESIGN: Untreated and 7KC-treated U937 cells were stained with NR and analyzed by flow cytometry and CLSM. 3D sequences of images were obtained by spectral analysis in a 2-photon excitation CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, which provides factor curves and images. Factor images are the result of the FAMIS image processing method, which handles emission spectra. In FRET analysis, preparations are screened at selected UV wavelengths to avoid emission of NR in the absence of 7KC. RESULTS: During 7KC-induced cell death,flow cytometry and CLSM revealed a modification of the cellular lipid content. Factor images show FRET occurrence and subsequent colocalization of 7KC and NR. CONCLUSION: This investigation established the utility of 2-photon excitation CLSM to assess colocalization of 7KC with NR by FRET and to identify and distinguish polar and neutral lipids stained by NR that accumulate from the effect of 7KC.  相似文献   
996.
The dynamic behavior of the microtubule cytoskeleton plays a crucial role in cellular organization, but the physical mechanisms underlying microtubule (re)organization in plant cells are poorly understood. We investigated microtubule dynamics in tobacco BY-2 suspension cells during interphase and during the formation of the preprophase band (PPB), the cytoskeletal structure that defines the site of cytokinesis. Here we show that after 2 h of microtubule accumulation in the PPB and concurrent disappearance elsewhere in the cortex, the PPB is completed and starts to breakdown exponentially already 20 min before the onset of prometaphase. During formation of the PPB, the dynamic instability, i.e., the stochastic alternating between growing and shrinking phases, of the cortical microtubules outside the PPB increases significantly, but the microtubules do not become shorter. Based on this, as well as on the cross-linking of microtubules in the PPB and the lack of evidence for motor involvement, we propose a "search-and-capture" mechanism for PPB formation, in which the regulation of dynamic instability causes the cortical microtubules to become more dynamic and possibly longer, while the microtubule cross-linking activity of the developing PPB preferentially stabilizes these "searching" microtubules. Thus, microtubules gradually disappear from the cortex outside the PPB and aggregate to the forming PPB.  相似文献   
997.
998.
Successful implantation absolutely depends on the reciprocal interaction between the implantation-competent blastocyst and the receptive uterus. Expression and gene targeting studies have shown that leukemia inhibitory factor (LIF), a cytokine of the IL-6 family, and Hoxa-10, an abdominalB-like homeobox gene, are crucial to implantation and decidualization in mice. Using these mutant mice, we sought to determine the importance of Msx-1 (another homeobox gene formerly known as Hox-7.1) and of Wnt4 (a ligand of the Wnt family) signaling in implantation because of their reported functions during development. We observed that Msx-1, Wnt4, and a Wnt antagonist sFRP4 are differentially expressed in the mouse uterus during the periimplantation period, suggesting their role in implantation. In addition, we observed an aberrant uterine expression of Msx-1 and sFRP4 in Lif mutant mice, and of Wnt4 and sFRP4 in Hoxa-10 mutant mice, further reinforcing the importance of these signaling pathways in implantation. Collectively, the present results provide evidence for a novel cytokine-homeotic-Wnt signaling network in implantation.  相似文献   
999.
1000.
A number of studies have indicated that exercise is associated with an increased oxidative stress in skeletal muscle tissue, but the nature of the increased oxidants and sites of their generation have not been clarified. The generation of extracellular reactive oxygen and nitrogen species has been studied in myotubes derived from an immortalized muscle cell line (H-2k(b) cells) that were stimulated to contract by electrical stimulation in culture. Cells were stimulated to contract with differing frequencies of electrical stimulation. Both induced release of superoxide anion and nitric oxide into the extracellular medium and caused an increase in extracellular hydroxyl radical activity. Increasing frequency of stimulation increased the nitric oxide generation and hydroxyl radical activity, but had no significant effect on the superoxide released. Additions of inhibitors of putative generating pathways indicated that contraction-induced NO release was primarily from neuronal NO synthase enzymes and that the superoxide released is likely to be generated by a plasma membrane-located, flavoprotein oxidoreductase system. The data also indicate that peroxynitrite is generated in the extracellular fluid of muscle during contractile activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号