首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   10篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   21篇
  2011年   10篇
  2010年   9篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   10篇
  2004年   1篇
  2003年   11篇
  2002年   4篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1990年   4篇
  1985年   1篇
  1980年   1篇
排序方式: 共有144条查询结果,搜索用时 515 毫秒
91.
Cylindrospermopsis raciborskii is a central bloom-forming cyanobacteria. However, despite its ecological significance, little is known of its interactions with the phages that infect it. Currently, only a single sequenced genome of a Cylindrospermopsis-infecting phage is publicly available. Here we describe the isolation and characterization of Cr-LKS3, a second phage infecting Cylindrospermopsis. Cr-LKS3 is a siphovirus with a higher genome similarity to prophages within heterotrophic bacteria genomes than to any other cyanophage/cyano-prophage, suggesting that it represents a novel cyanophage group. The function, order and orientation of the 72 genes in the Cr-LKS3 genome are highly similar to those of Escherichia virus Lambda (hereafter Lambda), despite the very low sequence similarity between these phages, showing high evolutionary convergence despite the substantial difference in host characteristics. Similarly to Lambda, the genome of Cr-LKS3 contains various genes that are known to be central to lysogeny, suggesting it can enter a lysogenic cycle. Cr-LKS3 has a unique ability to infect a host with a dramatically different GC content, without carrying any tRNA genes to compensate for this difference. This ability, together with its potential lysogenic lifestyle shed light on the complex interactions between C. raciborskii and its phages.  相似文献   
92.
93.

Aims

Obesity is an important risk factor for the development of chronic kidney disease. One of the major factors involved in the pathogenesis of obesity-associated kidney disease is glomerular hyperfiltration. Increasing salt-delivery to the macula densa is expected to decrease glomerular filtration rate (GFR) by activating tubuloglomerular feedback. Acetazolamide, a carbonic anhydrase inhibitor which inhibits salt reabsorption in the proximal tubule, increases distal salt delivery. Its effects on obesity-related glomerular hyperfiltration have not previously been studied. The aim of this investigation was to evaluate whether administration of acetazolamide to obese non diabetic subjects reduces glomerular hyperfiltration.

Materials and Methods

The study was performed using a randomized double-blind crossover design. Obese non-diabetic men with glomerular hyperfiltration were randomized to receive intravenously either acetazolamide or furosemide at equipotent doses. Twelve subjects received the allocated medications. Two weeks later, the same subjects received the drug which they had not received during the first study. Inulin clearance, p-aminohippuric acid clearance and fractional lithium excretion were measured before and after medications administration. The primary end point was a decrease in GFR, measured as inulin clearance.

Results

GFR decreased by 21% following acetazolamide and did not decrease following furosemide. Renal vascular resistance increased by 12% following acetazolamide, while it remained unchanged following furosemide administration. Natriuresis increased similarly following acetazolamide and furosemide administration. Sodium balance was similar in both groups.

Conclusions

Intravenous acetazolamide decreased GFR in obese non-diabetic men with glomerular hyperfiltration. Furosemide, administered at equipotent dose, did not affect GFR, suggesting that acetazolamide reduced glomerular hyperfiltration by activating tubuloglomerular feedback.

Trial Registration

ClinicalTrials.gov NCT01146288  相似文献   
94.
ARTS (Sept4_i2), is a pro-apoptotic protein localized at the mitochondria of living cells. In response to apoptotic signals, ARTS rapidly translocates to the cytosol where it binds and antagonizes XIAP to promote caspase activation. However, the mechanism of interaction between these two proteins and how it is regulated remained to be explored. In this study, we show that ARTS and XIAP bind directly to each other, as recombinant ARTS and XIAP proteins co-immunoprecipitate together. We also show that over expression of ARTS alone is sufficient to induce a strong down-regulation of XIAP protein levels and that this reduction occurs through the ubiquitin proteasome system (UPS). Using various deletion and mutation constructs of XIAP we show that ARTS specifically binds to the BIR3 domain in XIAP. Moreover, we found that ARTS binds to different sequences in BIR3 than other IAP antagonists such as SMAC/Diablo. Computational analysis comparing the location of the putative ARTS interface in BIR3 with the known interfaces of SMAC/Diablo and caspase 9 support our results indicating that ARTS interacts with residues in BIR3 that are different from those involved in binding SMAC/Diablo and caspase 9. We therefore suggest that ARTS binds and antagonizes XIAP in a way which is distinct from other IAP-antagonists to promote apoptosis.  相似文献   
95.
We have generated extreme ionizing radiation resistance in a relatively sensitive bacterial species, Escherichia coli, by directed evolution. Four populations of Escherichia coli K-12 were derived independently from strain MG1655, with each specifically adapted to survive exposure to high doses of ionizing radiation. D37 values for strains isolated from two of the populations approached that exhibited by Deinococcus radiodurans. Complete genomic sequencing was carried out on nine purified strains derived from these populations. Clear mutational patterns were observed that both pointed to key underlying mechanisms and guided further characterization of the strains. In these evolved populations, passive genomic protection is not in evidence. Instead, enhanced recombinational DNA repair makes a prominent but probably not exclusive contribution to genome reconstitution. Multiple genes, multiple alleles of some genes, multiple mechanisms, and multiple evolutionary pathways all play a role in the evolutionary acquisition of extreme radiation resistance. Several mutations in the recA gene and a deletion of the e14 prophage both demonstrably contribute to and partially explain the new phenotype. Mutations in additional components of the bacterial recombinational repair system and the replication restart primosome are also prominent, as are mutations in genes involved in cell division, protein turnover, and glutamate transport. At least some evolutionary pathways to extreme radiation resistance are constrained by the temporally ordered appearance of specific alleles.A survey of bacteria and archaea identifies 11 phyla that contain species with unusually high resistance to the lethal effects of ionizing radiation (IR). These phyla are not closely related to each other and do not share a common lineage, and all include genera that are considered radiosensitive (9). The existence of so many unrelated and isolated radioresistant species in the phylogenetic tree argues that the molecular mechanisms that protect against IR-induced damage evolved independently in these organisms, suggesting that at least some species have the capacity to acquire radioresistance through evolutionary processes if they are subjected to appropriate selective pressure.The first of these species to be discovered, and the best studied to date, is the bacterium Deinococcus radiodurans. The molecular basis of the extraordinary radioresistance of Deinococcus has not been elucidated, but well-constructed proposals abound. Radioresistance has variously been attributed to the condensed structure of the nucleoid (29, 40, 56), the elevated levels of Mn ion present in the cytosol as a mechanism to control protein oxidation (11, 12), a specialized RecA-independent DNA repair process (54), and other species attributes (9). Radioresistance in Deinococcus is probably mechanistically related to desiccation resistance derived from evolution in arid environments (37, 45), although this may not be the origin of the phenotype in all relevant species (9).An understanding of the genetic underpinnings of bacterial radiation resistance holds promise for yielding insights into the mechanistic basis of radiation toxicity, along with the potential for new approaches to facilitate recovery from radiation injury in other organisms, including humans. To better define the genetic, biochemical, and physiological characteristics most important for radioresistance, we employed a strategy to allow the cells to inform us. In brief, we generated radioresistant variants of radiosensitive bacteria and defined the genetic changes underlying the new phenotype.In 1946, Evelyn Witkin established that it was possible to increase the resistance of Escherichia coli B to DNA damage (50). She exposed cultures to high doses of UV light, killing most of the population and selecting for variants better able to tolerate UV. In the 6 decades since the Witkin report, additional investigators have repeated this result, demonstrating that iterative cycles of high-dose exposure to a DNA damaging agent can heritably enhance a culture''s ability to tolerate that DNA damaging agent. Increases in IR resistance have been reported for E. coli (17), Salmonella enterica serovar Typhimurium (14), and Bacillus pumulis (44), organisms that are otherwise considered radiosensitive. Davies and Sinskey (14) showed that for S. enterica serovar Typhimurium LT2, the number of cycles of exposure and recovery correlates with the level of radioresistance achieved. After 84 cycles, they generated a strain displaying inactivation kinetics similar to that of Deinococcus radiodurans, with a D10 value (the dose needed to inactivate 90% of the population) 200-fold higher than that of the parental strain.For this study, we expanded on these earlier studies by independently generating four IR-resistant populations of Escherichia coli K-12 MG1655 (4). Our effort included an important innovation relative to the earlier studies—we characterized the evolved populations with an experimental program that included the complete genomic resequencing of multiple strains purified from three of the populations, taking advantage of new sequencing technologies. The result is an increasingly detailed data set—based on a single robust model system—that allows us to (i) explore the molecular basis of radiation resistance in bacteria and (ii) test current hypotheses and search for novel mechanisms of radiation resistance.  相似文献   
96.
Primary neural cultures from the fruit fly, Drosophila melanogaster, enable a high-resolution glance into cellular processes and neuronal interaction. The development of the culture, along with its vitality and functionality, can be continuously monitored, and the abundance of available tools for D. melanogaster research can greatly assist in characterizing different aspects of the culture. The fly primary neural culture preparation thus offers a promising platform for studying a variety of processes relating to nervous system development, activity and pathology. Our data reveal that neural cultures derived from the CNS of third-instar D. melanogaster larvae undergo an organization process that is specific and consistent throughout different cultures, and culminates in the creation of an elaborate neural network. We demonstrate that this process is accompanied by detectable changes in the protein expression profile of the culture, indicating the involvement of multi-protein processes specific to each stage of the network's development. As a further proof of concept, we demonstrate differential expression of a particular protein family, the gap-junction constructing innexin protein family, throughout the network's life.  相似文献   
97.
The physical distance between presynaptic Ca(2+) channels and the Ca(2+) sensors that trigger exocytosis of neurotransmitter-containing vesicles is a key determinant of the signalling properties of synapses in the nervous system. Recent functional analysis indicates that in some fast central synapses, transmitter release is triggered by a small number of Ca(2+) channels that are coupled to Ca(2+) sensors at the nanometre scale. Molecular analysis suggests that this tight coupling is generated by protein-protein interactions involving Ca(2+) channels, Ca(2+) sensors and various other synaptic proteins. Nanodomain coupling has several functional advantages, as it increases the efficacy, speed and energy efficiency of synaptic transmission.  相似文献   
98.

Background

In Plasmodium falciparum infection, complement receptor-1 (CR1) on erythrocyte’s surface and ABO blood group play important roles in formation of rosettes which are presumed to be contributory in the pathogenesis of severe malaria. Although several studies have attempted to determine the association of CR1 polymorphisms with severe malaria, observations remain inconsistent. Therefore, a case control study and meta-analysis was performed to address this issue.

Methods

Common CR1 polymorphisms (intron 27 and exon 22) and blood group were typed in 353 cases of severe malaria (SM) [97 cerebral malaria (CM), 129 multi-organ dysfunction (MOD), 127 non-cerebral severe malaria (NCSM)], 141 un-complicated malaria and 100 healthy controls from an endemic region of Odisha, India. Relevant publications for meta-analysis were searched from the database.

Results

The homozygous polymorphisms of CR1 intron 27 and exon 22 (TT and GG) and alleles (T and G) that are associated with low expression of CR1 on red blood cells, conferred significant protection against CM, MOD and malaria deaths. Combined analysis showed significant association of blood group B/intron 27-AA/exon 22-AA with susceptibility to SM (CM and MOD). Meta-analysis revealed that the CR1 exon 22 low expression polymorphism is significantly associated with protection against severe malaria.

Conclusions

The results of the present study demonstrate that common CR1 variants significantly protect against severe malaria in an endemic area.  相似文献   
99.
Cannabinoid 2 (CB2) receptors expressed on immune cells are considered to be antifibrogenic. Hepatic stellate cells (HSCs) directly interact with phagocytosis lymphocytes, but the nature of this interaction is obscure. We aimed to study the effects of CB2 receptors on hepatic fibrosis via their role in mediating immunity. Hepatic fibrosis was induced by carbon-tetrachloride (CCl(4)) administration in C57BL/6 wild-type (WT) and CB2 knockout (CB2(-/-)) mice. Irradiated animals were reconstituted with WT or CB2(-/-) lymphocytes. Lymphocytes from na?ve/fibrotic WT animals and healthy/cirrhotic hepatitis C virus were preincubated in vitro with or without CB2 antagonist, evaluated for proliferation and apoptosis, and then cocultured with primary mouse HSCs or a human HSC line (LX2), respectively. Lymphocyte phagocytosis was then evaluated. Following CCl(4)-administration, CB2(-/-) mice developed significant hepatic fibrosis but less necroinflammation. WT mice harbored decreased liver CD4(+) and NK(+) cells but increased CD8(+) subsets. Na?ve CB2(-/-) mice had significantly decreased T cell subsets. Adoptive transfer of CB2(-/-) lymphocytes led to decreased fibrosis in the irradiated WT recipient compared with animals receiving WT lymphocytes. Moreover, necroinflammation also tended to decrease. In vitro, a CB2-antagonist directly increased human HSC activation and increased apoptosis and decreased proliferation of mice/human T cells (healthy/fibrotic) and their phagocytosis. We concluded that CB2(-/-) lymphocytes exert an antifibrotic activity, whereas lack of CB2 receptor in HSCs promotes fibrosis. These findings broaden our understanding of cannabinoid signaling in hepatic fibrosis beyond their activity solely in HSCs.  相似文献   
100.
ARTS is a mitochondrial protein that promotes apoptosis induced by a variety of proapoptotic stimulators. ARTS induces apoptosis, at least in part, through binding to and antagonizing IAPs (inhibitors of apoptosis proteins). As a result of ARTS binding to IAPs, caspase inhibition is removed and apoptosis can be executed. Here we show that high cellular levels of ARTS protein sensitize cells toward apoptosis. Accordingly, in healthy cells ARTS levels are kept low through constant ubiquitin-mediated degradation. Upon proapoptotic stimuli, the ubiquitination process is inhibited, resulting in increased levels of ARTS. Increased ARTS in turn leads to a decrease of Bcl-2 and Bcl-xL protein levels, cytochrome c release from mitochondria and apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号