首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   40篇
  2023年   5篇
  2022年   7篇
  2021年   20篇
  2020年   4篇
  2019年   3篇
  2018年   17篇
  2017年   19篇
  2016年   16篇
  2015年   27篇
  2014年   20篇
  2013年   29篇
  2012年   47篇
  2011年   36篇
  2010年   26篇
  2009年   21篇
  2008年   27篇
  2007年   31篇
  2006年   8篇
  2005年   14篇
  2004年   11篇
  2003年   9篇
  2002年   11篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1993年   4篇
  1991年   9篇
  1990年   6篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1985年   4篇
  1984年   2篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   3篇
  1967年   2篇
  1965年   3篇
  1964年   3篇
排序方式: 共有521条查询结果,搜索用时 218 毫秒
91.
A rapid micro‐scale solid‐phase micro‐extraction (SPME) procedure coupled with gas‐chromatography with flame ionized detector (GC‐FID) was used to extract parts per billion levels of a principle basmati aroma compound “2‐acetyl‐1‐pyrroline” (2‐AP) from bacterial samples. In present investigation, optimization parameters of bacterial incubation period, sample weight, pre‐incubation time, adsorption time, and temperature, precursors and their concentrations has been studied. In the optimized conditions, detection of 2‐AP produced by Bacillus cereus ATCC10702 using only 0.5 g of sample volume was 85 μg/kg. Along with 2‐AP, 15 other compounds produced by B. cereus were also reported out of which 14 were reported for the first time consisting mainly of (E)?2‐hexenal, pentadecanal, 4‐hydroxy‐2‐butanone, n‐hexanal, 2–6‐nonadienal, 3‐methoxy‐2(5H) furanone and 2‐acetyl‐1‐pyridine and octanal. High recovery of 2‐AP (87 %) from very less amount of B. cereus samples was observed. The method is reproducible fast and can be used for detection of 2‐AP production by B. cereus. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1356–1363, 2014  相似文献   
92.
Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)–induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.  相似文献   
93.
A thermophilic strain of Streptomyces thermonitrificans produced a high activity of intracellular glucose isomerase (12 U/ml) when grown in a medium containing 1% (w/v) xylose, supplemented with 2% (w/v) sorbitol as the second carbon source, at 50°C for 16 h. Addition of Mg2+ enhanced enzyme production but the organism could grow and produce the enzyme in the absence of Co2+.The authors are with the Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, IndiaNCL Communication No. 5813  相似文献   
94.
Context: Nickel oxide (NiO) nanoparticles (NPs) with appropriate surface chemistry have been widely used for their potential new applications in biomedical industry. Increased usage of these NPs enhances the chance of exposure of personnel involved in the work place.

Objective: This study was designed to assess the ability of NiO NPs to cause biochemical alterations post-acute oral exposure in female Wistar rats.

Materials and methods: Rats were administered with 125, 250, and 500?mg/kg doses of NiO NPs for haematological, biochemical, and histopathological studies. Biodistribution patterns of NiO NPs in female Wistar rats were also monitored.

Results: NiO NPs caused significant (p?Conclusions: This study revealed that exposure to nanosized NiO particles at acute doses may cause adverse changes in animal biochemical profiles. Further, the in vivo studies on toxicity evaluation help in biomonitoring of the potential contaminants.  相似文献   
95.
Molecular breeding in sesame is still at infancy due to limited number of microsatellite markers available and the low level of polymorphism exhibited by them. Therefore, whole genome sequencing was used for development of microsatellite markers so as to ensure availability of substantial number of polymorphic markers for use in marker assisted breeding programs. Whole genome sequencing of sesame variety ‘Swetha’ was done using Illumina paired-end sequencing and Roche 454 shotgun sequencing technologies (GCA_000975565.1 in GenBank). ‘GinMicrosatDb’, a genome-wide microsatellite marker database has been developed using the whole genome sequence data of sesame variety ‘Swetha’. The database consists of microsatellites localized on both linkage groups and scaffolds with their genomic co-ordinates. It provides five sets of forward and reverse primers for each of the microsatellite loci along with the flanking sequences, primer GC content, product size and melting temperature etc. The distribution of microsatellites can be viewed and selected through a genome browser as well as through a physical map. The newly identified microsatellite markers are expected to help sesame breeders in developing marker tags for traits of economic importance thereby bringing about greater efficiency in marker-assisted selection programs.  相似文献   
96.
Dissociated cerebellar granule cells maintained in medium containing 25 mM potassium undergo an apoptotic death when switched to medium with 5 mM potassium. Granule cells from mice in which Bax, a proapoptotic Bcl-2 family member, had been deleted, did not undergo apoptosis in 5 mM potassium, yet did undergo an excitotoxic cell death in response to stimulation with 30 or 100 μM NMDA. Within 2 h after switching to 5 mM K+, both wild-type and Bax-deficient granule cells decreased glucose uptake to <20% of control. Protein synthesis also decreased rapidly in both wild-type and Bax-deficient granule cells to 50% of control within 12 h after switching to 5 mM potassium. Both wild-type and Bax −/− neurons increased mRNA levels of c-jun, and caspase 3 (CPP32) and increased phosphorylation of the transactivation domain of c-Jun after K+ deprivation. Wild-type granule cells in 5 mM K+ increased cleavage of DEVD–aminomethylcoumarin (DEVD-AMC), a fluorogenic substrate for caspases 2, 3, and 7; in contrast, Bax-deficient granule cells did not cleave DEVD-AMC. These results place BAX downstream of metabolic changes, changes in mRNA levels, and increased phosphorylation of c-Jun, yet upstream of the activation of caspases and indicate that BAX is required for apoptotic, but not excitotoxic, cell death. In wild-type cells, Boc-Asp-FMK and ZVAD-FMK, general inhibitors of caspases, blocked cleavage of DEVD-AMC and blocked the increase in TdT-mediated dUTP nick end labeling (TUNEL) positivity. However, these inhibitors had only a marginal effect on preventing cell death, suggesting a caspase-independent death pathway downstream of BAX in cerebellar granule cells.  相似文献   
97.
98.
99.
Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), can also activate PKC in the presence of phosphatidylserine (PS) and Ca2+ with a KPIP2 of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP2 and DG on PKC. Here, we investigate the effect of PIP2 on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP2 inhibited specific binding of [3H]phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP2 than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP2 is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (Kd') against PIP2 concentration was linear over a range of 0.01-1 mol % with a Ki of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP2. Competition between PIP2 and phorbol ester could be demonstrated in a liposomal assay system also. These results indicate that PIP2, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP2 is a primary activator of the enzyme.  相似文献   
100.
Synthesis and degradation of polyphosphoinositides in a rat brain synaptosome preparation were depressed by phenobarbital. Phosphatidylinositol-4-phosphate kinase (PIP-kinase), the enzyme which synthesizes phosphatidylinositol-4,5-bisphosphate (PIP2) was most strongly affected (50% inhibition at 3 mM phenobarbital); phosphatidylinositol (PI-kinase) followed (50% at 15 mM). The phosphoesterases were less sensitive: PIP-monoesterase (50% at 39 mM), PIP2-monoesterase (at 47 mM), and, least inhibited, PIP-diesterase (50% at 65 mM) and PIP2-diesterase (at 68 mM). Phenobarbital by inhibiting PIP-kinase may reduce the membrane concentration of PIP2 and thus dampen the stimulus-response which leads to the hydrolysis of PIP2 and the formation of the second messenger, inositol-1,4,5-trisphosphate (IP3), involved in mobilization of intracellular Ca2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号