首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   6篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   6篇
  2006年   11篇
  2005年   3篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1979年   2篇
  1975年   1篇
  1969年   1篇
  1965年   1篇
  1955年   1篇
排序方式: 共有88条查询结果,搜索用时 343 毫秒
41.
Membrane-embedded voltage-activated potassium channels (Kv) bind intracellular scaffold proteins, such as the Post Synaptic Density 95 (PSD-95) protein, using a conserved PDZ-binding motif located at the channels' C-terminal tip. This interaction underlies Kv-channel clustering, and is important for the proper assembly and functioning of the synapse. Here we demonstrate that the C-terminal segments of Kv channels adjacent to the PDZ-binding motif are intrinsically disordered. Phylogenetic analysis of the Kv channel family reveals a cluster of channel sequences belonging to three out of the four main channel families, for which an association is demonstrated between the presence of the consensus terminal PDZ-binding motif and the intrinsically disordered nature of the immediately adjacent C-terminal segment. Our observations, combined with a structural analogy to the N-terminal intra-molecular ball-and-chain mechanism for Kv channel inactivation, suggest that the C-terminal disordered segments of these channel families encode an inter-molecular fishing rod-like mechanism for K(+) channel binding to scaffold proteins.  相似文献   
42.
Polypeptides chains are segregated by the translocon channel into secreted or membrane-inserted proteins. Recent reports claim that an in vivo system has been used to break the "amino acid code" used by translocons to make the determination of protein type (i.e. secreted or membrane-inserted). However, the experimental setup used in these studies could have confused the derivation of this code, in particular for polar amino acids. These residues are likely to undergo stabilizing interactions with other protein components in the experiment, shielding them from direct contact with the inhospitable membrane. Hence, it is our view that the "code" for protein translocation has not yet been deciphered and that further experiments are required for teasing apart the various energetic factors contributing to protein translocation.  相似文献   
43.
Increasing the affinity of binding proteins is invaluable for basic and applied biological research. Currently, directed protein evolution experiments are the main approach for generating such proteins through the construction and screening of large mutant libraries. Proliferating cell nuclear antigen (PCNA) is an essential hub protein that interacts with many different partners to tightly regulate DNA replication and repair in all eukaryotes. Here, we used computational design to generate human PCNA mutants with enhanced affinity for several different partners. We identified double mutations in PCNA, outside the main partner binding site, that were predicted to increase PCNA‐partner binding affinities compared to the wild‐type protein by forming additional hydrophobic interactions with conserved residues in the PCNA partners. Affinity increases were experimentally validated with four different PCNA partners, demonstrating that computational design can reveal unexpected regions where affinity enhancements in natural systems are possible. The designed PCNA mutants can be used as a valuable tool for further examination of the regulation of PCNA‐partner interactions during DNA replication and repair both in vitro and in vivo. More broadly, the ability to engineer affinity increases toward several PCNA partners suggests that interaction affinity is not an evolutionarily optimized trait of this system. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
44.
Pentacycloundecylamine (PCU) derived compounds have been shown to be promising lead structures for the development of novel drug candidates aimed at a variety of neurodegenerative and psychiatric diseases. Here we show for the first time a 3D quantitative structure–activity relationship (3D-QSAR) for a series of aza-PCU-derived compounds with activity at the sigma-1 (σ1) receptor. A comparative molecular field analysis (CoMFA) model was developed with a partial least squares cross validated (q2) regression value of 0.6, and a non-cross validated r2 of 0.9. The CoMFA model was effective at predicting the sigma-1 activities of a test set with an r2 >0.7. We also describe here the docking of the PCU-derived compounds into a homology model of the sigma-1 (σ1) receptor, which was developed to gain insight into binding of these cage compounds to the receptor. Based on docking studies we evaluated in a [3H]pentazocine binding assay an oxa-PCU, NGP1-01 (IC50 = 1.78 μM) and its phenethyl derivative (IC50 = 1.54 μM). Results from these studies can be used to develop new compounds with specific affinity for the sigma-1(σ1) receptor.  相似文献   
45.
A series of fluorescent heterocyclic adamantane amines were synthesised with the goal to develop novel fluorescent ligands for neurological assay development. These derivatives demonstrated multifunctional neuroprotective activity through inhibition of the N-methyl-d-aspartate receptor/ion channel, calcium channels and the enzyme nitric oxide synthase. It also exhibited a high degree of free radical scavenging potential. N-(1-adamantyl)-2-oxo-chromene-3-carboxamide (8), N-adamantan-1-yl-5-dimethyl-amino-1-naphthalenesulfonic acid (11) and N-(1-cyano-2H-isoindol-2-yl) adamantan-1-amine (12) were found to possess a high degree of multifunctionality with favourable physical-chemical properties for bioavailability and blood-brain barrier permeability. The ability of these heterocyclic adamantane amine derivatives as nitric oxide synthase inhibitors, calcium channel modulators, NMDAR inhibitors and effective antioxidants, indicate that they may find application as multifunctional drugs in neuroprotection.  相似文献   
46.
How proteins achieve high-affinity binding to a specific protein partner while simultaneously excluding all others is a major biological problem that has important implications for protein design. We report the crystal structure of the ultra-high-affinity protein-protein complex between the endonuclease domain of colicin E2 and its cognate immunity (Im) protein, Im2 (K(d)~10(-)(15)?M), which, by comparison to previous structural and biophysical data, provides unprecedented insight into how high affinity and selectivity are achieved in this model family of protein complexes. Our study pinpoints the role of structured water molecules in conjoining hotspot residues that govern stability with residues that control selectivity. A key finding is that a single residue, which in a noncognate context massively destabilizes the complex through frustration, does not participate in specificity directly but rather acts as an organizing center for a multitude of specificity interactions across the interface, many of which are water mediated.  相似文献   
47.
Through its receptor Kit (CD117), stem cell factor (SCF) critically regulates human mast cell (MC) differentiation, survival, priming, and activation. The dominance of SCF in setting these parameters compels stringent contra-regulation to maintain a balanced MC phenotype. We have synthesized a library of bispecific Ab fragments to examine the effect of linking Kit with CD300a. In this study, we report that CD300a exerts a strong inhibitory effect on Kit-mediated SCF-induced signaling, consequently impairing MC differentiation, survival, and activation in vitro. This effect derives from Kit-mediated tyrosine phosphorylation of CD300a and recruitment of the SHIP-1 but not of SH2-containing protein phosphatase 1. CD300a inhibits the constitutive activation of the human leukemic HMC-1 cells but not their survival. Finally, CD300a abrogates the allergic reaction induced by SCF in a murine model of cutaneous anaphylaxis. Our findings highlight CD300a as a novel regulator of Kit in human MC and suggest roles for this receptor as a suppressor of Kit signaling in MC-related disorders.  相似文献   
48.
Monoamine oxidase B (MAO-B) and nitric oxide synthase (NOS) have both been implicated in the pathology of neurodegenerative diseases. In an attempt to design dual-target-directed drugs that inhibit both these enzymes, a series of pteridine-2,4-dione analogues were synthesised. The compounds were found to be relatively weak NOS inhibitors but showed promising MAO-B activity with 6-amino-5-[(E)-3-(3-chloro-phenyl)-prop-2-en-(E)-ylideneamino]-1,3-dimethyl-1H-pyrimidine-2,4-dione and 6-[(E)-2-(3-chloro-phenyl)-vinyl]-1,3-dimethyl-1H-pteridine-2,4-dione inhibiting MAO-B with IC50 values of 0.602 and 0.314 μM, respectively. The pteridine-2,4-dione analogues thus show promise as scaffolds for the development of potent reversible MAO-B inhibitors and as observed in earlier studies, the most potent inhibitors were obtained with 3-chlorostyryl substitution.  相似文献   
49.
The adenosine A(2A) receptor has emerged as an attractive target for the treatment of Parkinson's disease (PD). Evidence suggests that antagonists of the A(2A) receptor (A(2A) antagonists) may be neuroprotective and may help to alleviate the symptoms of PD. We have reported recently that several members of the (E)-8-styrylcaffeine class of A(2A) antagonists also are potent inhibitors of monoamine oxidase B (MAO-B). Since MAO-B inhibitors are known to possess anti-parkinsonian properties, dual-target-directed drugs that block both MAO-B and A(2A) receptors may have enhanced value in the management of PD. In an attempt to explore this concept further we have prepared three additional classes of C-8 substituted caffeinyl analogues. The 8-phenyl- and 8-benzylcaffeinyl analogues exhibited relatively weak MAO-B inhibition potencies while selected (E,E)-8-(4-phenylbutadien-1-yl)caffeinyl analogues were found to be exceptionally potent reversible MAO-B inhibitors with enzyme-inhibitor dissociation constants (K(i) values) ranging from 17 to 149 nM. Furthermore, these (E,E)-8-(4-phenylbutadien-1-yl)caffeines acted as potent A(2A) antagonists with K(i) values ranging from 59 to 153 nM. We conclude that the (E,E)-8-(4-phenylbutadien-1-yl)caffeines are a promising candidate class of dual-acting compounds.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号