首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   764篇
  免费   57篇
  国内免费   1篇
  2023年   5篇
  2022年   13篇
  2021年   23篇
  2020年   16篇
  2019年   10篇
  2018年   17篇
  2017年   15篇
  2016年   21篇
  2015年   36篇
  2014年   43篇
  2013年   78篇
  2012年   68篇
  2011年   67篇
  2010年   33篇
  2009年   33篇
  2008年   56篇
  2007年   45篇
  2006年   40篇
  2005年   32篇
  2004年   36篇
  2003年   21篇
  2002年   38篇
  2001年   2篇
  2000年   10篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1966年   1篇
  1962年   2篇
排序方式: 共有822条查询结果,搜索用时 15 毫秒
721.
Escherichia coli K1's Capsule Is a Barrier to Bacteriophage T7   总被引:1,自引:0,他引:1  
Escherichia coli strains that produce the K1 polysaccharide capsule have long been associated with pathogenesis. This capsule is believed to increase the cell's invasiveness, allowing the bacteria to avoid phagocytosis and inactivation by complement. It is also recognized as a receptor by some phages, such as K1F and K1-5, which have virion-associated enzymes that degrade the polysaccharide. In this report we show that expression of the K1 capsule in E. coli physically blocks infection by T7, a phage that recognizes lipopolysaccharide as the primary receptor. Enzymatic removal of the K1 antigen from the cell allows T7 to adsorb and replicate. This observation suggests that the capsule plays an important role as a defense against some phages that recognize structures beneath it and that the K1-specific phages evolved to counter this physical barrier.  相似文献   
722.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for KS tumors, multicentric Castleman's disease, and primary effusion lymphomas. Like other herpesvirus capsids, the KSHV capsid is an icosahedral structure composed of six proteins. The capsid shell is made up of the major capsid protein, two triplex proteins, and the small capsid protein. The scaffold protein and the protease occupy the internal space. The assembly of KSHV capsids is thought to occur in a manner similar to that determined for herpes simplex virus type 1 (HSV-1). Our goal was to assemble KSHV capsids in insect cells using the baculovirus expression vector system. Six KSHV capsid open reading frames were cloned and the proteins expressed in Sf9 cells: pORF25 (major capsid protein), pORF62 (triplex 1), pORF26 (triplex 2), pORF17 (protease), pORF17.5 (scaffold protein), and also pORF65 (small capsid protein). When insect cells were coinfected with these baculoviruses, angular capsids that contained internal core structures were readily observed by conventional electron microscopy of the infected cells. Capsids were also readily isolated from infected cells by using rate velocity sedimentation. With immuno-electron microscopy methods, these capsids were seen to be reactive to antisera to pORF65 as well as to KSHV-positive human sera, indicating the correct conformation of pORF65 in these capsids. When either virus expressing the triplex proteins was omitted from the coinfection, capsids did not assemble; similar to observations made in HSV-1-infected cells. If the virus expressing the scaffold protein was excluded, large open shells that did not attain icosahedral structure were seen in the nuclei of infected cells. The presence of pORF65 was required for capsid assembly, in that capsids did not form if this protein was absent as judged by both by ultrastructural analysis of infected cells and rate velocity sedimentation experiments. Thus, a novel outcome of this study is the finding that the small capsid protein of KSHV, like the major capsid and triplex proteins, is essential for capsid shell assembly.  相似文献   
723.
The mitochondrial genome is highly susceptible to damage by reactive oxygen species (ROS) generated endogenously as a byproduct of respiration. ROS-induced DNA lesions, including oxidized bases, abasic (AP) sites, and oxidized AP sites, cause DNA strand breaks and are repaired via the base excision repair (BER) pathway in both the nucleus and mitochondria. Repair of damaged bases and AP sites involving 1-nucleotide incorporation, named single nucleotide (SN)-BER, was observed with mitochondrial and nuclear extracts. During SN-BER, the 5'-phosphodeoxyribose (dRP) moiety, generated by AP-endonuclease (APE1), is removed by the lyase activity of DNA polymerase gamma (pol gamma) and polymerase beta in the mitochondria and nucleus, respectively. However, the repair of oxidized deoxyribose fragments at the 5' terminus after strand break would require 5'-exo/endonuclease activity that is provided by the flap endonuclease (FEN-1) in the nucleus, resulting in multinucleotide repair patch (long patch (LP)-BER). Here we show the presence of a 5'-exo/endonuclease in the mitochondrial extracts of mouse and human cells that is involved in the repair of a lyase-resistant AP site analog via multinucleotide incorporation, upstream and downstream to the lesion site. We conclude that LP-BER also occurs in the mitochondria requiring the 5'-exo/endonuclease and pol gamma with 3'-exonuclease activity. Although a FEN-1 antibody cross-reacting species was detected in the mitochondria, it was absent in the LP-BER-proficient APE1 immunocomplex isolated from the mitochondrial extract that contains APE1, pol gamma, and DNA ligase 3. The LP-BER activity was marginally affected in FEN-1-depleted mitochondrial extracts, further supporting the involvement of an unidentified 5'-exo/endonuclease in mitochondrial LP-BER.  相似文献   
724.
Rapid molecular evolution in a living fossil   总被引:1,自引:0,他引:1  
The tuatara of New Zealand is a unique reptile that coexisted with dinosaurs and has changed little morphologically from its Cretaceous relatives. Tuatara have very slow metabolic and growth rates, long generation times and slow rates of reproduction. This suggests that the species is likely to exhibit a very slow rate of molecular evolution. Our analysis of ancient and modern tuatara DNA shows that, surprisingly, tuatara have the highest rate of molecular change recorded in vertebrates. Our work also suggests that rates of neutral molecular and phenotypic evolution are decoupled.  相似文献   
725.
The human chloride/bicarbonate AE1 (anion exchanger) is a dimeric glycoprotein expressed in the red blood cell membrane,and expressed as an N-terminal (Delta1-65) truncated form, kAE1(kidney AE1), in the basolateral membrane of alpha-intercalated cells in the distal nephron. Mutations in AE1 can cause SAO (Southeast Asian ovalocytosis) or dRTA (distal renal tubular acidosis), an inherited kidney disease resulting in impaired acid secretion. The dominant SAO mutation (Delta400-408) that results in an inactive transporter and altered erythrocyte shape occurs in manydRTA families, but does not itself result in dRTA. Compound heterozygotes of four dRTA mutations (R602H, G701D, DeltaV850 and A858D) with SAO exhibit dRTA and abnormal red blood cell properties. Co-expression of kAE1 and kAE1 SAO with the dRTAmutantswas studied in polarized epithelial MDCK(Madin-Darbycanine kidney) cells. Like SAO, the G701D and DeltaV850 mutants were predominantly retained intracellularly, whereas the R602H and A858D mutants could traffic to the basolateral membrane. When co-expressed in transfected cells, kAE1 WT (wild-type)and kAE1 SAO could interact with the dRTA mutants. MDCK cells co-expressing kAE1 SAO with kAE1 WT, kAE1 R602Hor kAE1 A858D showed a decrease in cell-surface expression of the co-expressed proteins. When co-expressed, kAE1 WT colocalized with the kAE1 R602H, kAE1 G701D, kAE1 DeltaV850 and kAE1 A858D mutants at the basolateral membrane, whereaskAE1 SAO co-localized with kAE1 WT, kAE1 R602H, kAE1 G701D, kAE1 DeltaV850 and kAE1 A858D in MDCK cells. The decrease in cell-surface expression of the dRTAmutants as a result of the interaction with kAE1 SAO would account for the impaired expression of functional kAE1 at the basolateral membrane of alpha-intercalated cells, resulting in dRTA in compound heterozygous patients.  相似文献   
726.
Caveolin-3 (Cav3), the primary protein component of caveolae in muscle cells, regulates numerous signaling pathways including insulin receptor signaling and facilitates free fatty acid (FA) uptake by interacting with several FA transport proteins. We previously reported that Cav3 knockout mice (Cav3KO) develop cardiac hypertrophy with diminished contractile function; however, the effects of Cav3 gene ablation on cardiac substrate utilization are unknown. The present study revealed that the uptake and oxidation of FAs and glucose were normal in hypertrophic Cav3KO hearts. Real-time PCR analysis revealed normal expression of lipid metabolism genes including FA translocase (CD36) and carnitine palmitoyl transferase-1 in Cav3KO hearts. Interestingly, myocardial cAMP content was significantly increased by 42%; however, this had no effect on PKA activity in Cav3KO hearts. Microarray expression analysis revealed a marked increase in the expression of genes involved in receptor trafficking to the plasma membrane, including Rab4a and the expression of WD repeat/FYVE domain containing proteins. We observed a fourfold increase in the expression of cellular retinol binding protein-III and a 3.5-fold increase in 17beta-hydroxysteroid dehydrogenase type 11, a member of the short-chain dehydrogenase/reductase family involved in the biosynthesis and inactivation of steroid hormones. In summary, a loss of Cav3 in the heart leads to cardiac hypertrophy with normal substrate utilization. Moreover, a loss of Cav3 mRNA altered the expression of several genes not previously linked to cardiac growth and function. Thus we have identified a number of new target genes associated with the pathogenesis of cardiac hypertrophy.  相似文献   
727.
Gametocytocidal activities of pyronaridine and DNA topoisomerase II inhibitors against two isolates of multidrug-resistant Plasmodium falciparum, KT1 and KT3 were determined. After sorbitol treatment, pure gametocyte cultures of Plasmodium falciparum containing mostly young gametocytes (stage II and III) obtained on day 11 were exposed to the drugs for 48 h. The effect of the drugs on gametocyte development was assessed by counting gametocytes on day 15 of culture. Pyronaridine was the most effective gametocytocidal drug against P. falciparum isolates KT1 and KT3 with 50% inhibitory concentration of 6 and 20 nM, respectively. Moreover, the 50% inhibitory concentration of pyronaridine was lower than that of primaquine which is the only drug used to treat malaria patients harboring gametocytes. Prokaryotic (norfloxacin) and eukaryotic (amsacrine and etoposide) DNA topoisomerase II inhibitors were only effective against asexual but not sexual stages of the malaria parasites. Pyronaridine has both schizontocidal and gametocytocidal activities against the human malaria parasite, P. falciparum.  相似文献   
728.
729.
A powdery mildew fungus found on Paeonia lutea at the Botanical Garden of Geneva (Switzerland) was identified as Erysiphe hypophylla based on morphological observations. The occurrence of E. hypophylla on Paeonia seemed curious, because host plants of this species have been restricted to a few Quercus species of the family Fagaceae. In this study, we determined the rDNA sequences of the powdery mildew specimens on Paeonia and E. hypophylla on Quercus to confirm the identity of the Paeonia fungus. The three sequences from the specimens on P. lutea were identical to one another in both ITS and 28S rDNA regions and also to the sequences of E. hypophylla on Q. robur, which supports the identification that the fungus on P. lutea is E. hypophylla. However, these sequences were also identical to the sequences of E. alphitoides on Quercus spp. and Oidium mangiferae on mango. This result suggests a possibility that E. hypophylla is conspecific to E. alphitoides. Further study is required to clarify whether E. hypophylla is a synonym of E. alphitoides or a distinct species.  相似文献   
730.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号