首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14038篇
  免费   1360篇
  国内免费   11篇
  15409篇
  2024年   16篇
  2023年   110篇
  2022年   266篇
  2021年   589篇
  2020年   268篇
  2019年   333篇
  2018年   395篇
  2017年   334篇
  2016年   593篇
  2015年   929篇
  2014年   923篇
  2013年   1056篇
  2012年   1358篇
  2011年   1310篇
  2010年   771篇
  2009年   620篇
  2008年   842篇
  2007年   805篇
  2006年   791篇
  2005年   625篇
  2004年   567篇
  2003年   504篇
  2002年   461篇
  2001年   92篇
  2000年   54篇
  1999年   81篇
  1998年   94篇
  1997年   47篇
  1996年   60篇
  1995年   30篇
  1994年   42篇
  1993年   43篇
  1992年   50篇
  1991年   28篇
  1990年   33篇
  1989年   29篇
  1987年   16篇
  1986年   11篇
  1985年   20篇
  1984年   24篇
  1983年   12篇
  1982年   12篇
  1981年   13篇
  1980年   12篇
  1979年   14篇
  1978年   14篇
  1977年   13篇
  1975年   10篇
  1974年   9篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 3 毫秒
961.
Rhomboid peptidases (proteases) play key roles in signaling events at the membrane bilayer. Understanding the regulation of rhomboid function is crucial for insight into its mechanism of action. Here we examine the oligomeric state of three different rhomboid proteases. We subjected Haemophilus influenzae, (hiGlpG), Escherichia coli GlpG (ecGlpG) and Bacillus subtilis (YqgP) to sedimentation equilibrium analysis in detergent-solubilized dodecylmaltoside (DDM) solution. For hiGlpG and ecGlpG, rhomboids consisting of the core 6 transmembrane domains without and with soluble domains respectively, and YqgP, predicted to have 7 transmembrane domains with larger soluble domains at the termini, the predominant species was dimeric with low amounts of monomer and tetramers observed. To examine the effect of the membrane domain alone on oligomeric state of rhomboid, hiGlpG, the simplest form from the rhomboid class of intramembrane proteases representing the canonical rhomboid core of six transmembrane domains, was studied further. Using gel filtration and crosslinking we demonstrate that hiGlpG is dimeric and functional in DDM detergent solution. More importantly co-immunoprecipitation studies demonstrate that the dimer is present in the lipid bilayer suggesting a physiological dimer. Overall these results indicate that rhomboids form oligomers which are facilitated by the membrane domain. For hiGlpG we have shown that these oligomers exist in the lipid bilayer. This is the first detailed oligomeric state characterization of the rhomboid family of peptidases.  相似文献   
962.
It is widely believed that host prion protein (PrP), without nucleic acid, converts itself into an infectious form (PrP‐res) that causes transmissible encephalopathies (TSEs), such as human sporadic CJD (sCJD), endemic sheep scrapie, and epidemic BSE. There are many detailed investigations of PrP, but proteomic studies of other proteins in verified infectious TSE particles have not been pursued, even though brain homogenates without PrP retain their complete infectious titer. To define proteins that may be integral to, process, or protect an agent genome, we developed a streamlined, high‐yield purification of infectious FU‐CJD mouse brain particles with minimal PrP. Proteinase K (PK) abolished all residual particle PrP, but did not reduce infectivity, and viral‐size particles lacking PrP were ~70S (vs. 90–120S without PK). Furthermore, over 1,500 non‐PrP proteins were still present and positively identified in high titer FU‐CJD particles without detectable PrP by mass spectrometry (LC‐MS/MS); 114 of these peptides were linked to viral motifs in the environmental–viral database, and not evident in parallel uninfected controls. Host components were also identified in both PK and non‐PK treated particles from FU‐CJD mouse brain and human sCJD brain. This abundant cellular data had several surprises, including finding Huntingtin in the sCJD but not normal human brain samples. Similarly, the neural Wiskott–Aldrich sequence and multivesicular and endosome components associated with retromer APP (Alzheimer amyloid) processing were only in sCJD. These cellular findings suggest that new therapies directed at retromer–vesicular trafficking in other neurodegenerative diseases may also counteract late‐onset sCJD PrP amyloid pathology. J. Cell. Biochem. 115: 2012–2021, 2014. © 2014 Wiley Periodicals, Inc.
  相似文献   
963.
Species richness (SR) and functional group richness (FGR) are often confounded in both observational and experimental field studies of biodiversity and ecosystem function. This precludes discernment of their separate influences on ecosystem processes, including nitrogen (N) cycling, and how those influences might be moderated by global change factors. In a 17‐year field study of grassland species, we used two full factorial experiments to independently vary SR (one or four species, with FGR = 1) and FGR (1–4 groups, with SR = 4) to assess SR and FGR effects on ecosystem N cycling and its response to elevated carbon dioxide (CO2) and N addition. We hypothesized that increased plant diversity (either SR or FGR) and elevated CO2 would enhance plant N pools because of greater plant N uptake, but decrease soil N cycling rates because of greater soil carbon inputs and microbial N immobilization. In partial support of these hypotheses, increasing SR or FGR (holding the other constant) enhanced total plant N pools and decreased soil nitrate pools, largely through higher root biomass, and increasing FGR strongly reduced mineralization rates, because of lower root N concentrations. In contrast, increasing SR (holding FGR constant and despite increasing total plant C and N pools) did not alter root N concentrations or net N mineralization rates. Elevated CO2 had minimal effects on plant and soil N metrics and their responses to plant diversity, whereas enriched N increased plant and soil N pools, but not soil N fluxes. These results show that functional diversity had additional effects on both plant N pools and rates of soil N cycling that were independent of those of species richness.  相似文献   
964.
Consumer-resource dynamics of hosts with their pathogens are modulated by complex interactions between various branches of hosts’ immune systems and the imperfectly perceived pathogen. Multistrain SIR models tend to sweep competitive interaction terms between different pathogen strains into a single parameter representing cross-immunity. After reviewing several hypotheses about the generation of immune responses, we look into the consequences of assuming that hosts with identical immune repertoires respond to new pathogens identically. In particular, we vary the breadth of the typical immune response, or the average number of pathogen epitopes a host perceives, and the probability of perceiving a particular epitope. The latter quantity in our model is equivalent both to the degree of diversity in host responses at the population level and the relative immunodominance of different epitopes. We find that a sharp transition to strain coexistence occurs as host responses become narrow or skewed toward one epitope. Increasing the breadth of the immune response and the immunogenicity of different epitopes typically increases the range of cross-immunity values in which chaotic strain dynamics and competitive exclusion occur. Models attempting to predict the outcomes of strain competition should thus consider the potential diversity and specificity of hosts’ responses to infection.  相似文献   
965.
Human TopBP1 ensures genome integrity during normal S phase   总被引:6,自引:0,他引:6       下载免费PDF全文
Cell cycle checkpoints are essential for maintaining genomic integrity. Human topoisomerase II binding protein 1 (TopBP1) shares sequence similarity with budding yeast Dpb11, fission yeast Rad4/Cut5, and Xenopus Cut5, all of which are required for DNA replication and cell cycle checkpoints. Indeed, we have shown that human TopBP1 participates in the activation of replication checkpoint and DNA damage checkpoints, following hydroxyurea treatment and ionizing radiation. In this study, we address the physiological function of TopBP1 in S phase by using small interfering RNA. In the absence of exogenous DNA damage, TopBP1 is recruited to replicating chromatin. However, TopBP1 does not appear to be essential for DNA replication. TopBP1-deficient cells have increased H2AX phosphorylation and ATM-Chk 2 activation, suggesting the accumulation of DNA double-strand breaks in the absence of TopBP1. This leads to formation of gaps and breaks at fragile sites, 4N accumulation, and aberrant cell division. We propose that the cellular function of TopBP1 is to monitor ongoing DNA replication. By ensuring proper DNA replication, TopBP1 plays a critical role in the maintenance of genomic stability during normal S phase as well as following genotoxic stress.  相似文献   
966.
We investigate isothermal diffusion and growth of micron-scale liquid domains within membranes of free-floating giant unilamellar vesicles with diameters between 80 and 250 μm. Domains appear after a rapid temperature quench, when the membrane is cooled through a miscibility phase transition such that coexisting liquid phases form. In membranes quenched far from a miscibility critical point, circular domains nucleate and then progress within seconds to late stage coarsening in which domains grow via two mechanisms 1), collision and coalescence of liquid domains, and 2), Ostwald ripening. Both mechanisms are expected to yield the same growth exponent, α = 1/3, where domain radius grows as timeα. We measure α = 0.28 ± 0.05, in excellent agreement. In membranes close to a miscibility critical point, the two liquid phases in the membrane are bicontinuous. A quench near the critical composition results in rapid changes in morphology of elongated domains. In this case, we measure α = 0.50 ± 0.16, consistent with theory and simulation.  相似文献   
967.
The genetic diversity of Borrelia burgdorferi sensu lato was assessed in a focus of Lyme borreliosis in southern Britain dominated by game birds. Ticks, rodents, and pheasants were analyzed for spirochete infections by PCR targeting the 23S-5S rRNA genes, followed by genotyping by the reverse line blot method. In questing Ixodes ricinus ticks, three genospecies of B. burgdorferi sensu lato were detected, with the highest prevalences found for Borrelia garinii and Borrelia valaisiana. B. burgdorferi sensu stricto was rare (<1%) in all tick stages. Borrelia afzelii was not detected in any of the samples. More than 50% of engorged nymphs collected from pheasants were infected with borreliae, mainly B. garinii and/or B. valaisiana. Although 19% of the rodents harbored B. burgdorferi sensu stricto and/or B. garinii in internal organs, only B. burgdorferi sensu stricto was transmitted to xenodiagnostic tick larvae (it was transmitted to 1% of the larvae). The data indicate that different genospecies of B. burgdorferi sensu lato can be maintained in nature by distinct transmission cycles involving the same vector tick species but different vertebrate host species. Wildlife management may have an influence on the relative risk of different clinical forms of Lyme borreliosis.  相似文献   
968.
Ecological theory suggests that co‐infecting parasite species can interact within hosts directly, via host immunity and/or via resource competition. In mice, competition for red blood cells (RBCs) between malaria and bloodsucking helminths can regulate malaria population dynamics, but the importance of RBC competition in human hosts was unknown. We analysed infection density (i.e. the concentration of parasites in infected hosts), from a 2‐year deworming study of over 4000 human subjects. After accounting for resource‐use differences among parasites, we find evidence of resource competition, priority effects and a competitive hierarchy within co‐infected individuals. For example reducing competition via deworming increased Plasmodium vivax densities 2.8‐fold, and this effect is limited to bloodsucking hookworms. Our ecological, resource‐based perspective sheds new light into decades of conflicting outcomes of malaria–helminth co‐infection studies with significant health and transmission consequences. Beyond blood, investigating within‐human resource competition may bring new insights for improving human health.  相似文献   
969.
We recently identified a novel protein called syncoilin, a putative intermediate filament protein that interacts with alpha-dystrobrevin, a member of the dystrophin-associated protein complex. Syncoilin is found at the neuromuscular junction, sarcolemma, and Z-lines and is thought to be important for muscle fiber integrity. Based on the similar protein structure and cellular localization of syncoilin and desmin, we proposed that these proteins interact in vivo. The data presented confirm an interaction between syncoilin and desmin and demonstrate their co-localization in skeletal muscle. Intriguingly, whereas these proteins interact, COS-7 cell expression studies show that desmin and syncoilin do not assemble into heterofilaments. Furthermore, fractionation assay and immunofluorescence study of H2K myoblasts and myotubes suggest that, unlike typical intermediate filament proteins, syncoilin does not participate in filament formation with any protein. However, it is possible that syncoilin is involved in the anchoring of the desmin intermediate filament network at the sarcolemma and the neuromuscular junction. This interaction is likely to be important for maintaining muscle fiber integrity and may also link the dystrophin-associated protein complex to the cytoskeleton. The dysfunction or absence of syncoilin may result in the disruption of the intermediate filament network leading to muscle necrosis. Syncoilin is therefore an ideal candidate gene for muscular dystrophies and desmin-related myopathies.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号