首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14533篇
  免费   1445篇
  国内免费   11篇
  2024年   16篇
  2023年   110篇
  2022年   267篇
  2021年   591篇
  2020年   271篇
  2019年   335篇
  2018年   399篇
  2017年   335篇
  2016年   603篇
  2015年   940篇
  2014年   933篇
  2013年   1072篇
  2012年   1379篇
  2011年   1323篇
  2010年   784篇
  2009年   629篇
  2008年   859篇
  2007年   824篇
  2006年   806篇
  2005年   649篇
  2004年   587篇
  2003年   527篇
  2002年   482篇
  2001年   116篇
  2000年   77篇
  1999年   89篇
  1998年   98篇
  1997年   52篇
  1996年   67篇
  1995年   41篇
  1994年   54篇
  1993年   57篇
  1992年   75篇
  1991年   42篇
  1990年   45篇
  1989年   41篇
  1988年   21篇
  1987年   26篇
  1986年   22篇
  1985年   37篇
  1984年   28篇
  1982年   16篇
  1981年   17篇
  1980年   19篇
  1979年   19篇
  1978年   21篇
  1977年   17篇
  1975年   17篇
  1974年   15篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes breach of the colonic epithelial barrier, a vigorous Th1 inflammatory response, and colitis. Ultimately, an adaptive immune response leads to clearance of the bacteria. Whereas much is known about the adaptive response to C. rodentium, the role of the innate immune response remains unclear. In this study, we demonstrate for the first time that the TLR adaptor MyD88 is essential for survival and optimal immunity following infection. MyD88(-/-) mice suffer from bacteremia, gangrenous mucosal necrosis, severe colitis, and death following infection. Although an adaptive response occurs, MyD88-dependent signaling is necessary for efficient clearance of the pathogen. Based on reciprocal bone marrow transplants in conjunction with assessment of intestinal mucosal pathology, repair, and cytokine production, our findings suggest a model in which TLR signaling in hemopoietic and nonhemopoietic cells mediate three distinct processes: 1) induction of an epithelial repair response that maintains the protective barrier and limits access of bacteria to the lamina propria; 2) production of KC or other chemokines that attract neutrophils and thus facilitate killing of bacteria; and 3) efficient activation of an adaptive response that facilitates Ab-mediated clearance of the infection. Taken together, these experiments provide evidence for a protective role of innate immune signaling in infections caused by attaching and effacing pathogens.  相似文献   
992.
993.
994.
V(D)J recombination of immunoglobulin loci is dependent on the immune cell-specific Rag1 and Rag2 proteins as well as a number of ubiquitously expressed cellular DNA repair proteins that catalyze non-homologous end-joining of DNA double-strand breaks. The evolutionarily conserved Rad50/Mre11/Nibrin protein complex has a role in DNA double-strand break-repair, suggesting that these proteins, too, may participate in V(D)J recombination. Recent findings demonstrating that Rad50 function is defective in cells from patients afflicted with Fanconi anemia provide a possible mechanistic explanation for previous findings that lymphoblasts derived from these patients exhibit subtle defects in V(D)J recombination of extrachromosomal plasmid molecules. Here, we describe a series of findings that provide convincing evidence for a role of the Rad50 protein complex in V(D)J recombination. We found that the fidelity of V(D)J signal joint recombination in fibroblasts from patients afflicted with Fanconi anemia was reduced by nearly tenfold, compared to that observed in fibroblasts from normal donors. Second, we observed that antibody-mediated inhibition of the Rad50, Mre11, or Nibrin proteins reduced the fidelity of signal joint recombination significantly in wild-type cells. The latter finding was somewhat unexpected, because signal joint rejoining in cells from patients with Nijmegen breakage syndrome, which results from mutations in the Nibrin gene, occurs with normal fidelity. However, introduction of anti-Nibrin antibodies into these cells reduced the fidelity of signal joint recombination dramatically. These data reveal for the first time a role for the Rad50 complex in V(D)J recombination, and demonstrate that the protein product of the disease-causing allele responsible for Nijmegen breakage syndrome encodes a protein with residual DNA double-strand break repair activity.  相似文献   
995.
Hypoxia-ischemia with reperfusion is known to cause reactive oxygen species-related damage in mammalian systems, yet, the anoxia tolerant freshwater turtle is able to survive repeated bouts of anoxia/reoxygenation without apparent damage. Although the physiology of anoxia tolerance has been much studied, the adaptations that permit survival of reoxygenation stress have been largely ignored. In this study, we examine ROS production in the turtle striatum and in primary neuronal cultures, and examine the effects of adenosine (AD) on cell survival and ROS. Hydroxyl radical formation was measured by the conversion of salicylate to 2,3-dihydroxybenzoic acid (2,3-DHBA) using microdialysis; reoxygenation after 1 or 4 h anoxia did not result in increased ROS production compared with basal normoxic levels, nor did H2O2 increase after anoxia/reoxygenation in neuronally enriched cell cultures. Blockade of AD receptors increased both ROS production and cell death in vitro , while AD agonists decreased cell death and ROS. As turtle neurons proved surprisingly susceptible to externally imposed ROS stress (H2O2), we propose that the suppression of ROS formation, coupled to high antioxidant levels, is necessary for reoxygenation survival. As an evolutionarily selected adaptation, the ability to suppress ROS formation could prove an interesting path to investigate new therapeutic targets in mammals.  相似文献   
996.
To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 degrees C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 degrees C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T(1) digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.  相似文献   
997.
Multipotent neural stem cells (NSCs) are competent for commitment to the oligodendrocyte (OL) lineage both in vitro and in vivo. We exploited this property to develop a rat neurospheres (NS)/oligospheres (OS)-based culture system to generate large numbers of highly enriched late OL progenitors (preOLs) and mature OLs (MatOLs). CNS neuroblastoma cell line B104-derived conditioned medium promoted the generation of nearly pure populations of preOLs from dissociated OS. The subsequent culture of preOLs with ciliary neurotrophic factor (CNTF) and 3,3',5'-triiodo-L-thyronine (T(3)) generated nearly pure populations of MatOLs. OL lineage specificity was confirmed by immunocytochemistry, quantitative RT-PCR and gene expression profiling, which demonstrated large differences between preOLs and MatOLs. The insulin-like growth factors (IGFs) are potent neuro-protective agents required for OL survival. We used this system to systematically define maturation-dependent changes in IGF signaling during the course of OL differentiation. The IGF-I and insulin receptors, insulin receptor substrate-1 (IRS-1) and IRS-2, protein kinase B (PKB)/Akt and Janus kinase (JNK) were expressed at higher levels in NS and preOLs compared with OS and MatOLs. Erk expression increased markedly from NS to OS, decreased only partially upon commitment to preOLs, and, in MatOLs, returned to a low level similar to NS. IGF activation of the generally proliferative Erk pathway was gradually acquired during NSC differentiation, whereas IGF activation of the generally pro-survival, anti-apoptotic PI3K/PKB pathway was consistently robust at each developmental stage.  相似文献   
998.
Sphingosine-1-phosphate (S1P) is a lipid mediator that exerts multiple cellular functions through activation of a subfamily of G-protein-coupled receptors. Although there is evidence that S1P plays a role in the developing and adult CNS, little is known about the ability of brain parenchyma to synthesize this lipid. We have therefore analyzed the brain distribution of the enzymatic activity of the S1P synthesizing enzyme, sphingosine kinase (SPHK) [EC:2.7.1.91], as well as mRNA distribution for one of the two isoforms of this enzyme, sphingosine kinase 2. SPHK activity, measured by the conversion of [(3)H]sphingosine to [(3)H]S1P, is highest in cerebellum, followed by cortex and brainstem. Lowest activities were found in striatum and hippocampus. Sensitivity to 0.1% Triton-X suggests that this activity is accounted for by SPHK2. RT-PCR and in situ hybridization studies show that mRNA for this isoform has a distribution similar to that of SPHK activity. In vivo and in vitro ischemia increase SPHK activity and SPHK2 mRNA levels. These results indicate that SPHK2 is the predominant S1P-synthesizing isoform in normal brain parenchyma. Its heterogeneous distribution, in particular laminar distribution in cortex, suggests a neuronal localization and a possible role in cortical and cerebellar functions, in normal as well as ischemic brain.  相似文献   
999.
Cytomegalovirus (CMV) infection is endemic in Gambian infants, with 62% infected by 3 months and 85% by 12 months of age. We studied the CD8 T-cell responses of infants to CMV following primary infection. CMV-specific CD8 T cells, identified with tetramers, showed a fully differentiated phenotype (CD28(-) CD62L(-) CD95(+) perforin(+) granzyme A(+) Bcl-2(low)). Strikingly, the overall CD8 T-cell population developed a similar phenotype following CMV infection, which persisted for at least 12 months. In contrast, primary infection was accompanied by up-regulation of markers of activation (CD45R0 and HLA-D) on both CMV-specific cells and the overall CD8 T-cell population and division (Ki-67) of specific cells, but neither pattern persisted. At 12 months of age, the CD8 T-cell population of CMV-infected infants was more differentiated than that of uninfected infants. Although the subpopulation of CMV-specific cells remained constant, the CMV peptide-specific gamma interferon response was lower in younger infants and increased with age. As the CD8 T-cell phenotype induced by CMV is indicative of immune dysfunction in the elderly, the existence of a similar phenotype in large numbers of Gambian infants raises the question of whether CMV induces a similarly deleterious effect.  相似文献   
1000.
T lymphocyte (T cell) activation and proliferation is induced by the activation of multiple signal transduction pathways. Earlier studies indicate that CARMA1, a Caspase Recruitment Domain (CARD) and Membrane-associated GUanylate Kinase domain (MAGUK)-containing scaffold protein, plays an essential role in NF-kappaB activation induced by the costimulation of T cell receptor (TCR) and CD28 molecules. However, the molecular mechanism by which CARMA1 mediates TCR-CD28 costimulation-induced NF-kappaB activation is not fully understood. Here we show that CARMA1 is constitutively oligomerized. This oligomerization of CARMA1 is through its Coiled-coil domain. Disruption of the predicted structure of the Coiled-coil domain of CARMA1 impaired its oligomerization and, importantly, abrogated CARMA1-mediated NF-kappaB activation. Interestingly, disruption of the CC1 domain abrogates CARMA1 localization, whereas disruption of the CC2 domain seems to inhibit CARMA1 self-association. Together, our results demonstrate that the oligomerization of CARMA1 is required for TCR-induced NF-kappaB activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号