首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22725篇
  免费   2020篇
  国内免费   660篇
  2024年   22篇
  2023年   200篇
  2022年   537篇
  2021年   1071篇
  2020年   558篇
  2019年   702篇
  2018年   769篇
  2017年   633篇
  2016年   955篇
  2015年   1490篇
  2014年   1604篇
  2013年   1753篇
  2012年   2182篇
  2011年   2020篇
  2010年   1197篇
  2009年   1020篇
  2008年   1298篇
  2007年   1177篇
  2006年   1077篇
  2005年   867篇
  2004年   756篇
  2003年   686篇
  2002年   621篇
  2001年   235篇
  2000年   182篇
  1999年   185篇
  1998年   163篇
  1997年   129篇
  1996年   139篇
  1995年   87篇
  1994年   88篇
  1993年   88篇
  1992年   108篇
  1991年   76篇
  1990年   81篇
  1989年   59篇
  1988年   45篇
  1987年   41篇
  1986年   34篇
  1985年   56篇
  1984年   55篇
  1983年   26篇
  1982年   27篇
  1981年   21篇
  1980年   17篇
  1979年   20篇
  1978年   25篇
  1977年   18篇
  1974年   20篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Clostridioides difficile infection (CDI) is the leading cause of nosocomial diarrhea and pseudomembranous colitis in the USA. In addition to these symptoms, patients with CDI can develop severe inflammation and tissue damage, resulting in life-threatening toxic megacolon. CDI is mediated by two large homologous protein toxins, TcdA and TcdB, that bind and hijack receptors to enter host cells where they use glucosyltransferase (GT) enzymes to inactivate Rho family GTPases. GT-dependent intoxication elicits cytopathic changes, cytokine production, and apoptosis. At higher concentrations TcdB induces GT-independent necrosis in cells and tissue by stimulating production of reactive oxygen species via recruitment of the NADPH oxidase complex. Although GT-independent necrosis has been observed in vitro, the relevance of this mechanism during CDI has remained an outstanding question in the field. In this study we generated novel C. difficile toxin mutants in the hypervirulent BI/NAP1/PCR-ribotype 027 R20291 strain to test the hypothesis that GT-independent epithelial damage occurs during CDI. Using the mouse model of CDI, we observed that epithelial damage occurs through a GT-independent process that does not involve immune cell influx. The GT-activity of either toxin was sufficient to cause severe edema and inflammation, yet GT activity of both toxins was necessary to produce severe watery diarrhea. These results demonstrate that both TcdA and TcdB contribute to disease pathogenesis when present. Further, while inactivating GT activity of C. difficile toxins may suppress diarrhea and deleterious GT-dependent immune responses, the potential of severe GT-independent epithelial damage merits consideration when developing toxin-based therapeutics against CDI.  相似文献   
992.
993.

Correction to: The EMBO Journal (2021) 40: e107786. DOI 10.15252/embj.2021107786 | Published online 8 June 2021The authors would like to add three references to the paper: Starr et al and Zahradník et al also reported that the Q498H or Q498R mutation has enhanced binding affinity to ACE2; and Liu et al reported on the binding of bat coronavirus to ACE2.Starr et al and Zahradník et al have now been cited in the Discussion section, and the following sentence has been corrected from:“According to our data, the SARS‐CoV‐2 RBD with Q498H increases the binding strength to hACE2 by 5‐fold, suggesting the Q498H mutant is more ready to interact with human receptor than the wildtype and highlighting the necessity for more strict control of virus and virus‐infected animals”.to“Here, according to our data and two recently published papers, the SARS‐CoV‐2 RBD with Q498H or Q498R increases the binding strength to hACE2 (Starr et al, 2020; Zahradník et al, 2021), suggesting the mutant with Q498H or Q498R is more ready to interact with human receptor than the wild type and highlighting the necessity for more strict control of virus and virus‐infected animals”.The Liu et al citation has been added to the following sentence:“In another paper published by our group recently, RaTG13 RBD was found to bind to hACE2 with much lower binding affinity than SARS‐CoV‐2 though RaTG13 displays the highest whole‐genome sequence identity (96.2%) with the SARS‐CoV‐2 (Liu et al, 2021)”.Additionally, the authors have added the GISAID accession IDs to the sequence names of the SARS‐CoV‐2 in two human samples (Discussion section). To make identification unambiguous, the sequence names have been updated from “SA‐lsf‐27 and SA‐lsf‐37” to “GISAID accession ID: EPI_ISL_672581 and EPI_ISL_672589”.Lastly, the authors declare in the Materials and Methods section that all experiments employed SARS‐CoV‐2 pseudovirus in cultured cells. These experiments were performed in a BSL‐2‐level laboratory and approved by Science and Technology Conditions Platform Office, Institute of Microbiology, Chinese Academy of Sciences.These changes are herewith incorporated into the paper.  相似文献   
994.
普通菜豆(Phaseolus vulgaris)是重要的食用豆作物,然而其极易受盐胁迫危害,导致产量下降。褪黑素能提高植物耐盐能力。为探明外源褪黑素调控普通菜豆耐盐能力的机制,以普通菜豆品种奶花芸豆(GZ-YD014)为实验材料,设置水(W,对照)、盐胁迫(S)和盐胁迫+100μmol·L–1褪黑素(M+S) 3个处理。结果发现,盐胁迫抑制了普通菜豆胚根的生长,使其长度、表面积、体积以及直径显著降低,外源褪黑素可缓解盐胁迫对普通菜豆胚根生长的抑制。外施褪黑素显著降低盐胁迫下活性氧积累和丙二醛(MDA)含量,提高保护酶(过氧化物酶、超氧化物歧化酶、过氧化氢酶以及抗坏血酸过氧化物酶)活性,增加渗透调节物质(可溶性糖和可溶性蛋白)以及生长素(IAA)、赤霉素(GA)和玉米素(ZT)的含量,降低脱落酸(ABA)含量。通过转录组分析挖掘出217个差异表达基因(DEGs),DEGs在GO富集中显著(P-value<0.05)富集到核酸相关条目上,在KEGG富集中显著(P-value<0.05)富集到核酸损伤修复(包括碱基切除修复、错配修复以及核苷酸切除修复)通路。...  相似文献   
995.
Stroke is a brain system disease with a high fatality rate and disability rate. About 80% of strokes are ischemic strokes. Cerebral ischemia-reperfusion injury (CIRI) caused by ischemic stroke seriously affects the prognosis of stroke patients. The purpose of this study is to investigate the effect of sufentanil (SUF) on CIRI model rats. We used middle cerebral artery occlusion (MCAO) to make the CIRI model in rats and monitored region cerebral blood flow (rCBF) to ensure that blood flow was blocked and recanalized. We used ELISA and RT-PCR to detect the expression of inflammatory factors in rat serum and brain tissue. In addition, we detected the expression of metalloproteinase (MMP) 2, MMP9 and collagen IV in brain tissues and performed Evans blue (EB) assay to determine the permeability of the blood-brain barrier (BBB). Finally, we clarified the apoptosis of brain tissue through the TUNEL staining and the detection of caspase 3, Bcl2 and Bax. Various concentrations of SUF, especially 5, 10 and 25μg/kg of SUF, all alleviated the infarct size, neurological function and brain edema of MCAO rats. SUF pretreatment also effectively reduced the expression of inflammatory cytokines in MCAO rats, including interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10 and tumor necrosis factor (TNF)-α. In addition, SUF also inhibited MMP2 and MMP9 and promoted the expression of collagen IV, indicating that SUF attenuated the destruction of the BBB. SUF also inhibited caspase 3 and Bax rats and promoted Bcl2 in MCAO rats, thus inhibiting cell apoptosis. SUF pretreatment effectively improved the neurological function and cerebral infarction of MCAO rats, inhibited excessive inflammation in rats, protected the BBB, and inhibited cell apoptosis in brain tissue.Key words: Sufentanil, cerebral ischemia-reperfusion injury, inflammation, blood-brain barrier  相似文献   
996.
[目的]探究微嗜酸寡养单胞菌中的漆酶对AFB1的降解活性,并确定漆酶在菌株CW117降解代谢AFB1过程中的贡献.[方法]从微嗜酸寡养单胞菌基因组中,共筛选到两个漆酶基因lc1和lc2,并用大肠杆菌BL21外源表达蛋白rLC1和rLC2,在体外检测其对AFB1的降解活性.同时参考前人报道,研究了氧化性辅剂对漆酶AFB1...  相似文献   
997.
Large‐scale patterns of biodiversity and formation have garnered increasing attention in biogeography and macroecology. The Qinghai‐Tibet Plateau (QTP) is an ideal area for exploring these issues. However, the QTP consists of multiple geographic subunits, which are understudied. The Kunlun Mountains is a geographical subunit situated in the northern edge of the QTP, in northwest China. The diversity pattern, community phylogenetic structures, and biogeographical roles of the current flora of the Kunlun Mountains were analyzed by collecting and integrating plant distribution, regional geological evolution, and phylogeography. A total of 1911 species, 397 genera, and 75 families present on the Kunlun Mountains, of which 29.8% of the seed plants were endemic to China. The mean divergence time (MDT) of the Kunlun Mountains flora was in the early Miocene (19.40 Ma). Analysis of plant diversity and MDT indicated that the eastern regions of the Kunlun Mountains were the center of species richness, endemic taxa, and ancient taxa. Geographical origins analysis showed that the Kunlun Mountains flora was diverse and that numerous clades were from East Asia and Tethyan. Analysis of geographical origins and geological history together highlighted that the extant biodiversity on the Kunlun Mountains appeared through species recolonization after climatic fluctuations and glaciations during the Quaternary. The nearest taxon index speculated that habitat filtering was the most important driving force for biodiversity patterns. These results suggest that the biogeographical roles of the Kunlun Mountains are corridor and sink, and the corresponding key processes are species extinction and immigration. The Kunlun Mountains also form a barrier, representing a boundary among multiple floras, and convert the Qinghai‐Tibet Plateau into a relatively closed geographical unit.  相似文献   
998.
999.
1000.
Pantothenate kinase–associated neurodegeneration (PKAN) is an incurable rare genetic disorder of children and young adults caused by mutations in the PANK2 gene, which encodes an enzyme critical for the biosynthesis of coenzyme A. Although PKAN affects only a small number of patients, it shares several hallmarks of more common neurodegenerative diseases of older adults such as Alzheimer''s disease and Parkinson''s disease. Advances in etiological understanding and treatment of PKAN could therefore have implications for our understanding of more common diseases and may shed new lights on the physiological importance of coenzyme A, a cofactor critical for the operation of various cellular metabolic processes. The large body of knowledge that accumulated over the years around PKAN pathology, including but not limited to studies of various PKAN models and therapies, has contributed not only to progress in our understanding of the disease but also, importantly, to the crystallization of key questions that guide future investigations of the disease. In this review, we will summarize this knowledge and demonstrate how it forms the backdrop to new avenues of research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号