首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14131篇
  免费   1362篇
  国内免费   8篇
  15501篇
  2024年   26篇
  2023年   110篇
  2022年   265篇
  2021年   589篇
  2020年   268篇
  2019年   332篇
  2018年   394篇
  2017年   334篇
  2016年   592篇
  2015年   931篇
  2014年   927篇
  2013年   1068篇
  2012年   1366篇
  2011年   1313篇
  2010年   771篇
  2009年   623篇
  2008年   842篇
  2007年   806篇
  2006年   787篇
  2005年   624篇
  2004年   568篇
  2003年   508篇
  2002年   466篇
  2001年   94篇
  2000年   63篇
  1999年   83篇
  1998年   93篇
  1997年   46篇
  1996年   62篇
  1995年   31篇
  1994年   45篇
  1993年   45篇
  1992年   46篇
  1991年   29篇
  1990年   32篇
  1989年   30篇
  1987年   16篇
  1986年   11篇
  1985年   22篇
  1984年   22篇
  1983年   13篇
  1982年   12篇
  1981年   13篇
  1980年   12篇
  1979年   14篇
  1978年   15篇
  1977年   13篇
  1975年   10篇
  1974年   11篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The rapid proliferation of cells, the tissue-specific expression of genes and the emergence of signaling networks characterize early embryonic development of all vertebrates. The kinetics and location of signals - even within single cells - in the developing embryo complements the identification of important developmental genes. Immunostaining techniques are described that have been shown to define the kinetics of intracellular and whole animal signals in structures as small as primary cilia. The techniques for fixing, imaging and processing images using a laser-scanning confocal compound microscope can be completed in as few as 36 hr.Zebrafish (Danio rerio) is a desirable organism for investigators who seek to conduct studies in a vertebrate species that is affordable and relevant to human disease. Genetic knockouts or knockdowns must be confirmed by the loss of the actual protein product. Such confirmation of protein loss can be achieved using the techniques described here. Clues into signaling pathways can also be deciphered by using antibodies that are reactive with proteins that have been post-translationally modified by phosphorylation. Preserving and optimizing the phosphorylated state of an epitope is therefore critical to this determination and is accomplished by this protocol.This study describes techniques to fix embryos during the first 72 hr of development and co-localize a variety of relevant epitopes with cilia in the Kupffer''s Vesicle (KV), the kidney and the inner ear. These techniques are straightforward, do not require dissection and can be completed in a relatively short period of time. Projecting confocal image stacks into a single image is a useful means of presenting these data.  相似文献   
42.
Reviews in Fish Biology and Fisheries - Albatross bycatch has been increasing over the past decade in the US tuna longline fishery of the central North Pacific. A controlled field...  相似文献   
43.
44.
45.

Background

Maturation of human immunodeficiency virus type 1 (HIV-1) occurs upon activation of HIV-1 protease embedded within GagProPol precursors and cleavage of Gag and GagProPol polyproteins. Although reversible oxidation can regulate mature protease activity as well as retrovirus maturation, it is possible that the effects of oxidation on viral maturation are mediated in whole, or part, through effects on the initial intramolecular cleavage event of GagProPol. In order assess the effect of reversible oxidation on this event, we developed a system to isolate the first step in protease activation involving GagProPol.

Methodology/Principal Findings

To determine if oxidation influences this step, we created a GagProPol plasmid construct (pGPfs-1C) that encoded mutations at all cleavage sites except p2/NC, the initial cleavage site in GagProPol. pGPfs-1C was used in an in vitro translation assay to observe the behavior of this initial step without interference from subsequent processing events. Diamide, a sulfhydral oxidizing agent, inhibited processing at p2/NC by >60% for pGPfs-1C and was readily reversed with the reductant, dithiothreitol. The ability to regulate processing by reversible oxidation was lost when the cysteines of the embedded protease were mutated to alanine. Unlike mature protease, which requires only oxidation of cys95 for inhibition, both cysteines of the embedded protease contributed to this inhibition.

Conclusions/Significance

We developed a system that can be used to study the first step in the cascade of HIV-1 GagProPol processing and show that reversible oxidation of cysteines of HIV-1 protease embedded in GagProPol can block this initial GagProPol autoprocessing. This type of regulation may be broadly applied to the majority of retroviruses.  相似文献   
46.
47.
In an endotoxaemic mouse model of sepsis, a tissue-based proteomics approach for biomarker discovery identified long pentraxin 3 (PTX3) as the lead candidate for inflamed myocardium. When the redox-sensitive oligomerization state of PTX3 was further investigated, PTX3 accumulated as an octamer as a result of disulfide-bond formation in heart, kidney, and lung—common organ dysfunctions seen in patients with sepsis. Oligomeric moieties of PTX3 were also detectable in circulation. The oligomerization state of PTX3 was quantified over the first 11 days in critically ill adult patients with sepsis. On admission day, there was no difference in the oligomerization state of PTX3 between survivors and non-survivors. From day 2 onward, the conversion of octameric to monomeric PTX3 was consistently associated with a greater survival after 28 days of follow-up. For example, by day 2 post-admission, octameric PTX3 was barely detectable in survivors, but it still constituted more than half of the total PTX3 in non-survivors (p < 0.001). Monomeric PTX3 was inversely associated with cardiac damage markers NT-proBNP and high-sensitivity troponin I and T. Relative to the conventional measurements of total PTX3 or NT-proBNP, the oligomerization of PTX3 was a superior predictor of disease outcome.Severe sepsis is a common acute illness in intensive care units (ICUs)1 and is associated with high mortality rates and chronic morbidity. When it is associated with hypotension (termed septic shock), the mortality rate is very high (50% to 80%). Cardiovascular dysfunction during sepsis is multifactorial and often associated with minimal loss of myocardial tissue, but with the release of myocardial-specific markers such as troponins. A key unmet clinical need is the availability of a biomarker that predicts myocardial dysfunction early, monitors response to treatment, and thus identifies a cohort of patients at higher risk of septic shock to aid in targeted interventions and improve outcome (1).In the present study, we used proteomics for biomarker discovery. Over the past decade, the field of proteomics has made impressive progress. Plasma and serum, however, are the most complex proteomes of the human body (2), and less abundant proteins tend to be missed in untargeted proteomics analyses of body fluids (3). Thus, we pursued an alternative strategy: the application of proteomics to diseased tissue (4), in which the potential biomarkers are less dilute and have a less uncertain cellular origin (57). We employed a solubility-based protein-subfractionation methodology to analyze inflammatory proteins that are retained with sepsis tissue. This innovative proteomics approach shall reveal inflammatory molecules that reside and persist within inflamed tissue. We hypothesized that proteins that accumulate in the susceptible tissues are more likely to be biomarker candidates for organ dysfunction than proteins that just circulate in plasma or serum. We then validated our proteomics findings in the preclinical model using samples from sepsis patients admitted to ICUs.  相似文献   
48.
Ribosomal protein S4 nucleates assembly of the 30S ribosome 5′ and central domains, which is crucial for the survival of cells. Protein S4 changes the structure of its 16S rRNA binding site, passing through a non-native intermediate complex before forming native S4-rRNA contacts. Ensemble FRET was used to measure the thermodynamic stability of non-native and native S4 complexes in the presence of Mg2+ ions and other 5′-domain proteins. Equilibrium titrations of Cy3-labeled 5′-domain RNA with Cy5-labeled protein S4 showed that Mg2+ ions preferentially stabilize the native S4-rRNA complex. In contrast, ribosomal proteins S20 and S16 act by destabilizing the non-native S4-rRNA complex. The full cooperative switch to the native complex requires S4, S16, and S20 and is achieved to a lesser degree by S4 and S16. The resulting thermodynamic model for assembly of the 30S body illustrates how ribosomal proteins selectively bias the equilibrium between alternative rRNA conformations, increasing the cooperativity of rRNA folding beyond what can be achieved by Mg2+ ions alone.  相似文献   
49.
50.
Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20–50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9–35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号