全文获取类型
收费全文 | 14189篇 |
免费 | 1373篇 |
国内免费 | 10篇 |
专业分类
15572篇 |
出版年
2024年 | 16篇 |
2023年 | 110篇 |
2022年 | 268篇 |
2021年 | 589篇 |
2020年 | 266篇 |
2019年 | 337篇 |
2018年 | 394篇 |
2017年 | 334篇 |
2016年 | 594篇 |
2015年 | 933篇 |
2014年 | 934篇 |
2013年 | 1065篇 |
2012年 | 1376篇 |
2011年 | 1315篇 |
2010年 | 776篇 |
2009年 | 633篇 |
2008年 | 846篇 |
2007年 | 814篇 |
2006年 | 795篇 |
2005年 | 634篇 |
2004年 | 579篇 |
2003年 | 512篇 |
2002年 | 467篇 |
2001年 | 102篇 |
2000年 | 63篇 |
1999年 | 86篇 |
1998年 | 93篇 |
1997年 | 46篇 |
1996年 | 63篇 |
1995年 | 30篇 |
1994年 | 42篇 |
1993年 | 47篇 |
1992年 | 51篇 |
1991年 | 31篇 |
1990年 | 37篇 |
1989年 | 27篇 |
1988年 | 10篇 |
1987年 | 20篇 |
1986年 | 15篇 |
1985年 | 21篇 |
1984年 | 23篇 |
1983年 | 12篇 |
1982年 | 12篇 |
1981年 | 14篇 |
1980年 | 13篇 |
1979年 | 13篇 |
1978年 | 14篇 |
1977年 | 13篇 |
1975年 | 10篇 |
1973年 | 14篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Sarah E. Burr John D. Hart Tansy Edwards Ignatius Baldeh Ebrima Bojang Emma M. Harding-Esch Martin J. Holland Thomas M. Lietman Sheila K. West David C. W. Mabey Ansumana Sillah Robin L. Bailey 《PLoS neglected tropical diseases》2013,7(7)
Background
Trachoma, caused by ocular Chlamydia trachomatis infection, is the leading infectious cause of blindess, but its prevalence is now falling in many countries. As the prevalence falls, an increasing proportion of individuals with clinical signs of follicular trachoma (TF) is not infected with C. trachomatis. A recent study in Tanzania suggested that other bacteria may play a role in the persistence of these clinical signs.Methodology/Principal Findings
We examined associations between clinical signs of TF and ocular colonization with four pathogens commonly found in the nasopharnyx, three years after the initiation of mass azithromycin distribution. Children aged 0 to 5 years were randomly selected from 16 Gambian communitites. Both eyes of each child were examined and graded for trachoma according to the World Health Organization (WHO) simplified system. Two swabs were taken from the right eye: one swab was processed for polymerase chain reaction (PCR) using the Amplicor test for detection of C. trachomatis DNA and the second swab was processed by routine bacteriology to assay for the presence of viable Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus and Moraxella catarrhalis. Prevalence of TF was 6.2% (96/1538) while prevalence of ocular C. trachomatis infection was 1.0% (16/1538). After adjustment, increased odds of TF were observed in the presence of C. trachomatis (OR = 10.4, 95%CI 1.32–81.2, p = 0.03), S. pneumoniae (OR = 2.14, 95%CI 1.03–4.44, p = 0.04) and H. influenzae (OR = 4.72, 95% CI 1.53–14.5, p = 0.01).Conclusions/Significance
Clinical signs of TF can persist in communities even when ocular C. trachomatis infection has been controlled through mass azithromycin distribution. In these settings, TF may be associated with ocular colonization with bacteria commonly carried in the nasopharnyx. This may affect the interpretation of impact surveys and the determinations of thresholds for discontinuing mass drug administration. 相似文献992.
Donaldson SC Straley BA Hegde NV Sawant AA DebRoy C Jayarao BM 《Applied and environmental microbiology》2006,72(6):3940-3948
Healthy calves (n = 96, 1 to 9 weeks old) from a dairy herd in central Pennsylvania were examined each month over a five-month period for fecal shedding of ceftiofur-resistant gram-negative bacteria. Ceftiofur-resistant Escherichia coli isolates (n = 122) were characterized by antimicrobial resistance (disk diffusion and MIC), serotype, pulsed-field gel electrophoresis subtypes, beta-lactamase genes, and virulence genes. Antibiotic disk diffusion assays showed that the isolates were resistant to ampicillin (100%), ceftiofur (100%), chloramphenicol (94%), florfenicol (93%), gentamicin (89%), spectinomycin (72%), tetracycline (98%), ticarcillin (99%), and ticarcillin-clavulanic acid (99%). All isolates were multidrug resistant and displayed elevated MICs. The E. coli isolates belonged to 42 serotypes, of which O8:H25 was the predominant serotype (49.2%). Pulsed-field gel electrophoresis classified the E. coli isolates into 27 profiles. Cluster analysis showed that 77 isolates (63.1%) belonged to one unique group. The prevalence of pathogenic E. coli was low (8%). A total of 117 ceftiofur-resistant E. coli isolates (96%) possessed the bla(CMY2) gene. Based on phenotypic and genotypic characterization, the ceftiofur-resistant E. coli isolates belonged to 59 clonal types. There was no significant relationship between calf age and clonal type. The findings of this study revealed that healthy dairy calves were rapidly colonized by antibiotic-resistant strains of E. coli shortly after birth. The high prevalence of multidrug-resistant nonpathogenic E. coli in calves could be a significant source of resistance genes to other bacteria that share the same environment. 相似文献
993.
Elizabeth D Brooks Haiqing Yi Stephanie L Austin Beth L Thurberg Sarah P Young John C Fyfe Priya S Kishnani Baodong Sun 《Comparative medicine》2016,66(1):41-51
Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies.Abbreviations: CCR, curly-coated retriever; CPK, creatine phosphokinase; GSD IIIa, glycogen storage disease type IIIa; Glc4, Glcα1-6Glcα1-4Glcα1-4GlcGlycogen storage disease type IIIa (GSD IIIa; OMIM, 232400) is an autosomal recessive disorder caused by mutations in the glycogen debranching enzyme gene (AGL), leading to various clinical signs. The tissues mainly affected are liver, heart, and skeletal muscle. Clinical manifestations include hypoglycemia, elevated serum concentrations of liver and muscle enzymes, hepatomegaly, growth retardation, muscle weakness, cardiac hypertrophy with arrhythmia risk, polycystic ovaries and neuropathy.15,17,29 Current treatments are mainly symptomatic and are not curative. The most frequently used therapies are dietary, such as providing uncooked corn starch to prevent hypoglycemia at young ages and high-protein diets, which have been shown to reverse the extent of cardiomyopathy associated with GSD IIIa.7,8,30,37 In addition, the use of medium-chain triglycerides has shown positive therapeutic effects in patients with GSD Ia and GSD IIIa.11,22 However, dietary therapies do not prevent the long-term complications of GSD IIIa, including hepatic cirrhosis, hepatocellular adenoma, hepatocellular carcinoma, cardiomyopathy, neuropathy, and myopathy.31An appropriate animal model is necessary to test novel therapies and address the long-term effects of GSD IIIa. Recently a mouse model for GSD III has been described that may prove beneficial in testing new therapies.19 However, the limitations of mouse models include a short lifespan that curtails the study of the long-term effects of novel treatments. In addition, a large animal model often mimics human disease more closely than do mouse models, as occurs in GSD type Ia dog models, which exhibit lactic acidosis similar to human patients, a characteristic that mouse models of GSD Ia lack.16 Therefore a naturally occurring large animal model for GSD IIIa may be more effective in terms of the development of new treatments than are available mouse models.GSD IIIa (OMIA, 001577) has been reported to occur in curly-coated retriever dogs (CCR) and is caused by a naturally occurring homozygous frameshift mutation in exon 32 that leads to the deletion of 126 amino acids at the C-terminus of glycogen debranching enzyme.12,40 The dogs in these previous studies proved to have abnormalities similar to those seen in humans affected with the disorder, namely progressive glycogen accumulation in muscle and liver, elevated liver and muscle enzymes (ALP, AST, creatine phosphokinase [CPK], and ALT), and eventual liver fibrosis. However, these animals were not followed beyond 16 mo of age in the earlier studies.12,40 The goal of the current study is to provide biochemical follow-up on these animals and analyze more extensively other tissues and organs involved in GSD IIIa in the dog model. A brief analysis of the naturally high protein diets of GSD IIIa dogs, as well as the effects of an increased protein diet in 2 dogs for the last few months of life, is included.We also include the analysis of a urinary biomarker, Glcα1–6Glcα1– 4Glcα1–4Glc (Glc4), which is a breakdown product of glycogen by α-amylase and neutral α-1,4-glucosidase.32 Elevated levels of Glc4 have been found in urine from patients with GSD types II, III, IV, VI, and IX and may correlate with disease advancement.1,18,24,32 To our knowledge, Glc4 has not been evaluated previously in dogs; we therefore here evaluated the utility of Glc4 as a biomarker of canine GSD IIIa. A correlation of Glc4 levels with liver enzyme concentrations in blood might indicate a role of Glc4 as a less-invasive biomarker for determining the advancement of liver disease in human and canine patients. 相似文献
994.
Identification and aggressiveness of four isolates of Fusarium oxysporum f.sp. cubense from Latundan banana in Brazil 下载免费PDF全文
995.
Heterotrimeric GTP-binding proteins, composed of , , and subunits, are involved in signal transduction pathways in animal and plant systems. In plants, physiological analyses implicate heterotrimeric G-proteins in ion channel regulation, light signaling, and hormone and pathogen responses. However, only one class of plant G genes has been identified to date. We have cloned a novel gene, Arabidopsis thaliana extra-large GTP-binding protein (AtXLG1). AtXLG1 appears to be a member of a small gene family and is transcribed in all tissues assayed: roots, leaves, stems, flowers, and fruits. The conceptually translated protein from AtXLG1 is 99 kDa, twice as large as typical G proteins. The carboxy-terminal half of the AtXLG1 protein has significant homology to animal and plant G proteins. This region includes a GTP-binding domain, a predicted helical domain, and an aspartate/glutamate-rich loop, which are characteristics of G's. Despite the absence of some of the amino acids implicated in GTP binding and hydrolysis by crystallographic and mutational analyses of mammalian G's, recombinant AtXLGl binds GTP with specificity. The amino-terminal region of AtXLGl contains domains homologous to the bacterial TonB-box, which is involved in energy transduction between the inner and outer bacterial membranes, and to zinc-finger proteins. Given the unique structure of AtXLG1, it will be of interest to uncover its physiological functions. 相似文献
996.
Shu W Guttentag S Wang Z Andl T Ballard P Lu MM Piccolo S Birchmeier W Whitsett JA Millar SE Morrisey EE 《Developmental biology》2005,283(1):226-239
Branching morphogenesis in the lung serves as a model for the complex patterning that is reiterated in multiple organs throughout development. Beta-catenin and Wnt signaling mediate critical functions in cell fate specification and differentiation, but specific functions during branching morphogenesis have remained unclear. Here, we show that Wnt/beta-catenin signaling regulates proximal-distal differentiation of airway epithelium. Inhibition of Wnt/beta-catenin signaling, either by expression of Dkk1 or by tissue-specific deletion of beta-catenin, results in disruption of distal airway development and expansion of proximal airways. Wnt/beta-catenin functions upstream of BMP4, FGF signaling, and N-myc. Moreover, we show that beta-catenin and LEF/TCF activate the promoters of BMP4 and N-myc. Thus, Wnt/beta-catenin signaling is a critical upstream regulator of proximal-distal patterning in the lung, in part, through regulation of N-myc, BMP4, and FGF signaling. 相似文献
997.
Owegi MA Carenbauer AL Wick NM Brown JF Terhune KL Bilbo SA Weaver RS Shircliff R Newcomb N Parra-Belky KJ 《The Journal of biological chemistry》2005,280(18):18393-18402
Subunit E is a component of the peripheral stalk(s) that couples membrane and peripheral subunits of the V-ATPase complex. In order to elucidate the function of subunit E, site-directed mutations were performed at the amino terminus and carboxyl terminus. Except for S78A and D233A/T202A, which exhibited V(1)V(o) assembly defects, the function of subunit E was resistant to mutations. Most mutations complemented the growth phenotype of vma4Delta mutants, including T6A and D233A, which only had 25% of the wild-type ATPase activity. Residues Ser-78 and Thr-202 were essential for V(1)V(o) assembly and function. The mutation S78A destabilized subunit E and prevented assembly of V(1) subunits at the membranes. Mutant T202A membranes exhibited 2-fold increased V(max) and about 2-fold less of V(1)V(o) assembly; the mutation increased the specific activity of V(1)V(o) by enhancing the k(cat) of the enzyme 4-fold. Reduced levels of V(1)V(o) and V(o) complexes at T202A membranes suggest that the balance between V(1)V(o) and V(o) was not perturbed; instead, cells adjusted the amount of assembled V-ATPase complexes in order to compensate for the enhanced activity. These results indicated communication between subunit E and the catalytic sites at the A(3)B(3) hexamer and suggest potential regulatory roles for the carboxyl end of subunit E. At the carboxyl end, alanine substitution of Asp-233 significantly reduced ATP hydrolysis, although the truncation 229-233Delta and the point mutation K230A did not affect assembly and activity. The implication of these results for the topology and functions of subunit E within the V-ATPase complex are discussed. 相似文献
998.
999.
The Biology of CRISPR-Cas: Backward and Forward 总被引:1,自引:0,他引:1
Frank Hille Hagen Richter Shi Pey Wong Majda Bratovič Sarah Ressel Emmanuelle Charpentier 《Cell》2018,172(6):1239-1259
1000.